

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 5, 45-54 (2017) www.astesj.com Proceedings of International Conference on Applied Mathematics (ICAM2017), Taza, Morocco

ASTES Journal ISSN: 2415-6698

Degenerate p(x)-elliptic equation with second membre in L^1

Adil Abbassi^{*,1}, Elhoussine Azroul², Abdelkrim Barbara²

¹ Sultan Moulay Slimane University, Mathematics, LMACS Laboratory, FST, Beni-Mellal, Morocco

² Sidi Mohamed Ben Abdellah University, Mathematics, LAMA Laboratory, FSDM, Fez, Morocco

A R T I C L E I N F O Article history: Received: 12 April, 2017 Accepted: 04 May, 2017 Online: 10 December, 2017 Keywords :

Sobolev spaces with weight and to variable exponents Truncations

ABSTRACT

In this paper, we prove the existence of a solution of the strongly nonlinear degenerate p(x)-elliptic equation of type:

$$(\mathcal{P}) \begin{cases} -div \ a(x, u, \nabla u) + g(x, u, \nabla u) &= f \quad in \ \Omega, \\ u &= 0 \quad on \quad \partial \Omega, \end{cases}$$

where Ω is a bounded open subset of \mathbb{R}^N , $N \ge 2$, a is a Carathéodory function from $\Omega \times \mathbb{R} \times \mathbb{R}^N$ into \mathbb{R}^N , who satisfies assumptions of growth, ellipticity and strict monotonicity. The nonlinear term g: $\Omega \times \mathbb{R} \times \mathbb{R}^N \longrightarrow \mathbb{R}$ checks assumptions of growth, sign condition and coercivity condition, while the right hand side f belongs to $L^1(\Omega)$.

1 Introduction

Let Ω be a bounded open subset of $I\!R^N$, $N \ge 2$, let $\partial \Omega$ its boundary and $p(x) \in C(\overline{\Omega})$ with p(x) > 1.

Let v be a weight function in Ω , ie: v measurable and strictly positive a.e. in Ω . We suppose furthermore, that the weight function satisfies also the integrability conditions defined in section 2.

Let us consider the following degenerate p(x)-elliptic problem with boundary condition

$$(\mathcal{P}) \begin{cases} Au + g(x, u, \nabla u) = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where *A* is a Leray-Lions operator defined from $W_0^{1,p(x)}(\Omega,\nu)$ to its dual $W^{-1,p'(x)}(\Omega,\nu^*)$, with $\nu^* = \nu^{1-p'(x)}$, by :

$Au = -\operatorname{div} a(x, u, \nabla u).$

where *a* is a Carathéodory function from $\Omega \times I\!\!R \times I\!\!R^N \longrightarrow I\!\!R^N$ who satisfies assumptions of growth, ellipticity and strict monotonicity, while the nonlinear term g: $\Omega \times I\!\!R \times I\!\!R^N \longrightarrow I\!\!R$ checks assumptions of sign and growth. We suppose moreover that *g* checks the following condition of coercivity:

$$\begin{cases} \exists \rho_1 > 0, \exists \rho_2 > 0 \quad \text{such that}:\\ \text{for } |s| \ge \rho_1, |g(x, s, \xi)| \ge \rho_2 \nu(x) |\xi|^{p(x)} \end{cases}$$

We suppose also that the second member f belongs to $L^1(\Omega)$.

Let consider the following degenerate p(x)-elliptic problem of Dirichlet:

$$\begin{cases} Au + g(x, u, \nabla u) = f \quad \text{in } \mathcal{D}'(\Omega), \\ u \in W_0^{1, p(x)}(\Omega, \nu), \quad g(x, u, \nabla u) \in L^1(\Omega). \end{cases}$$
(1)

In the case where p is constant and without weight, there is a wide literature in which one can find existence results for problem (1). When the second member f belongs to $W^{-1,p'}(\Omega)$, A. Bensoussan, L. Boccardo and F. Murat [6] studied the problem and give an existence result. While if $f \in L^1(\Omega)$ the initiated basic works were given by H. Brezis and Strauss [9], L. Boccardo and T. Gallou*ë*t [7] also proved an existence result for (1), which was extended to the a unilateral case studied by A. Benkirane and A. Elmahi [5]. When g is not necessarily the null function, T. Del Vecchio [10] proved first existence result for problem (1) in the case where g does not depend on the gradient and then in V. M Monetti and L. Randazzo [16] using, in both works, the rearrangement techniques.

Whoever in [1], Y. Akdim, E. Azroul and A. Benkirane treated the problem (1) within the framework of Sobolev spaces with weight $W_0^{1,p}(\Omega, \omega)$, but while keeping *p* constant.

E. Azroul, A. Barbara and H. Hjiej [2] studied (1), in the nonclassical case by considering nonstandard Sobolev spaces without weight $W_0^{1,p(x)}(\Omega)$. See as well [3] where existence and regularity of entropy solutions was obtained for equation (1) with degenerated

https://dx.doi.org/10.25046/aj020509

^{*}Adil Abbassi , FST , Beni-Mellal, Morocco & abbassi91@yahoo.fr

second member.

Our objectif, in this paper, is to study equation (1) by adopting Sobolev spaces with weight v(x), and to variable exponents p(x), $W_0^{1,p(x)}(\Omega, \nu)$. We prove that the problem (1) admits at least a solution $u \in W_0^{1,p(x)}(\Omega, \nu)$.

2 Functional frame

Throughout this section, we suppose that the variable exponent $p(\cdot) : \overline{\Omega} \to [1, +\infty[$ is log-Hölder continuous on Ω , that is there is a real constant c > 0 such that $\forall x, y \in \overline{\Omega}, x \neq y$ with |x - y| < 1/2 one has:

$$|p(x) - p(y)| \le \frac{c}{-\log|x - y|}$$

and satisfying

$$p^- \le p(x) \le p^+ < +\infty$$

where

$$p^- := \operatorname{ess} \inf_{x \in \overline{\Omega}} p(x); \quad p^+ := \operatorname{ess} \sup_{x \in \overline{\Omega}} p(x).$$

We define

$$C_+(\overline{\Omega}) = \{h \log - H\ddot{o} | \text{der continous on } \overline{\Omega}, h(x) > 1\}.$$

Definition 1 Let v be a function defined in Ω ; we call v a weight function in Ω if it is measurable and strictly positive a.e. in Ω .

2.1 Lebesgue spaces with weight and to variable exponents

Let $p \in C_+(\overline{\Omega})$ and ν be a weighted function in Ω . We define the Lebesgue space with weight and to variable exponents $L^{p(x)}(\Omega, \nu)$, by

 $L^{p(x)}(\Omega, \nu) = \{u : \Omega \rightarrow \mathbb{R}, \text{ measurable} :$

 $\int_{\Omega} v(x)|u|^{p(x)} dx < \infty$, equipped with the Luxemburg norm:

$$||u||_{p(x),\nu} = \inf\left\{\mu > 0 : \int_{\Omega} \nu(x) |\frac{u}{\mu}|^{p(x)} dx \le 1\right\}$$

Proposition 1 The space $\left(L^{p(x)}(\Omega, \nu), \|.\|_{p(x), \nu}\right)$ is of Banach.

Proof:

Considering the operator

$$M_{\nu^{\frac{1}{p(x)}}}: L^{p(x)}(\Omega, \nu) \longrightarrow L^{p(x)}(\Omega), f \to M_{\nu^{\frac{1}{p(x)}}}(f) = f \nu^{\frac{1}{p(x)}}$$

It's clear that $M_{\nu^{\frac{1}{p(x)}}}$ is isomorphism from $L^{p(x)}(\Omega, \nu)$ into $L^{p(x)}(\Omega)$, then $M_{\nu^{\frac{1}{p(x)}}}$ is a continuous biuniformly

application. Seeing that
$$L^{p(x)}(\Omega)$$
 is a Banach
then $\left(L^{p(x)}(\Omega, \nu), \|.\|_{p(x), \nu}\right)$ is of Banach.
Let's note $\rho_{\nu}(u) = \int_{\Omega} \nu(x) |u|^{p(x)} dx$.

Remark 1 In simple case v(x) = 1, we find again the Lebesgue space with variable exponents $L^{p(x)}(\Omega)$; and $\rho_v(u) = \rho_1(u) := \rho(u) = \int_{\Omega} |u|^{p(x)} dx$, (see [12],[13] and [17])

space,

Lemma 1 For all function $u \in L^{p(x)}(\Omega, \nu)$. There are the following assertions:

(i) $\rho_{\nu}(u) > 1$ (= 1;< 1) $\Leftrightarrow ||u||_{p(x),\nu} > 1$ (= 1;< 1), respectively.

(*ii*) If $||u||_{p(x),\nu} > 1$ then $||u||_{p(x),\nu}^{p_-} \le \rho_{\nu}(u) \le ||u||_{p(x),\nu}^{p^+}$. (*iii*) If $||u||_{p(x),\nu} < 1$ then $||u||_{p(x),\nu}^{p^+} \le \rho_{\nu}(u) \le ||u||_{p(x),\nu}^{p^-}$.

Proof:

Seeing that $\rho_{\nu}(u) = \rho(\nu^{\frac{1}{p(x)}}u)$ and $\|\nu^{\frac{1}{p(x)}}u\|_{p(x)} = \|u\|_{p(x),\nu}$, and using [17], we prove the lemma 2.1 above.

Let v be a weight function such that the following condition:

(w1)
$$\nu \in L^1_{loc}(\Omega)$$
; $\nu^{\frac{-1}{p(x)-1}} \in L^1_{loc}(\Omega)$.

Proposition 2 Let Ω be a bounded open subset of \mathbb{R}^N , and ν be a weight function on Ω , If (w1) is verified then $L^{p(x)}(\Omega, \nu) \hookrightarrow L^1_{loc}(\Omega)$.

Proof:

Let *K* be a included compact on Ω . Using Hölder inequality we have

$$\begin{split} \int_{K} |u| dx &= \int_{K} |u| v^{\frac{1}{p(x)}} v^{\frac{-1}{p(x)}} dx \\ &\leq 2 |||u| v^{\frac{1}{p(x)}} ||_{L^{p(x)}(K)} || v^{\frac{-1}{p(x)}} ||_{L^{p'(x)}(K)'} \\ &\leq 2 ||u||_{p(x), v} \bigg(\int_{K} v^{\frac{-p'(x)}{p(x)}} dx + 1 \bigg)^{\frac{1}{p'_{-}}}, \\ &\leq 2 ||u||_{p(x), v} \bigg(\int_{K} v^{\frac{-1}{p(x)-1}} dx + 1 \bigg)^{\frac{1}{p'_{-}}}. \end{split}$$

Thanks to the assumption (w1) we deduce that $\int_{K} |u| dx \le C ||u||_{p(x),\nu}.$

2.2 Spaces of Sobolev with weight and to variable exponents

Let $p \in C_+(\overline{\Omega})$ and ν be a weight function in Ω . We define the space of Sobolev with weight and to variable exponents denoted $W^{1,p(x)}(\Omega, \vec{\nu})$, by

$$W^{1,p(x)}(\Omega,\nu) = \left\{ u \in L^{p(x)}(\Omega) : \frac{\partial u}{\partial x_i} \in L^{p(x)}(\Omega,\nu), i = 1, ..., N \right\}$$

equipped with the norm

$$||u||_{1,p(x),\nu} = ||u||_{p(x)} + \sum_{i=1}^{N} ||\frac{\partial u}{\partial x_i}||_{p(x),\nu}$$

which is equivalent to the Luxemburg norm

$$|||u||| = \inf\left\{\mu > 0: \int_{\Omega} \left(\left|\frac{u}{\mu}\right|^{p(x)} + \nu(x)\sum_{i=1}^{N}\left|\frac{\partial u}{\partial x_{i}}\right|^{p(x)}\right) dx \le 1\right\}.$$

Proposition 3 Let v be a weight function in Ω who checks the condition (w1).

Then the space $(W^{1,p(x)}(\Omega, \nu), \|.\|_{1,p(x),\nu})$ is of Banach.

Proof:

Let us consider $(u_n)_n$ a Cauchy sequence of $(W^{1,p(x)}(\Omega,\nu), \|.\|_{1,p(x),\nu}).$

Then $(u_n)_n$ is a Cauchy sequence of $L^{p(x)}(\Omega)$ and the sequence $(\frac{\partial u_n}{\partial x_i})_n$ is also a Cauchy belong $L^{p(x)}(\Omega, \nu)$, i =1,...,N.

According the proposition 2.1, there exists $u \in$ $L^{p(x)}(\Omega)$ such that $u_n \to u$ in $L^{p(x)}(\Omega)$, and $\frac{\partial u_n}{\partial x_i} \rightarrow$ there exists $v_i \in L^{p(x)}(\Omega, \nu)$ such that v_i in $L^{p(x)}(\Omega, \nu)$, i = 1, ..., N.

Seeing that proposition 2.2, we have $L^{p(x)}(\Omega, \nu) \subset$ $L^1_{loc}(\Omega)$ and $L^1_{loc}(\Omega) \subset D'(\Omega)$.

Thus, we obtain $\forall \varphi \in D(\Omega)$,

$$\begin{aligned} \langle T_{v_i}, \varphi \rangle &= \lim_{n \to \infty} \langle T_{\frac{\partial u_n}{\partial x_i}}, \varphi \rangle, \\ &= -\lim_{n \to \infty} \langle T_{u_n}, \frac{\partial \varphi}{\partial x_i} \rangle \\ &= -\langle T_u, \frac{\partial \varphi}{\partial x_i} \rangle, \\ &= \langle T_{\frac{\partial u}{\partial x_i}}, \varphi \rangle. \end{aligned}$$

Hence $T_{v_i} = T_{\frac{\partial u}{\partial x_i}}$, i.e. $v_i = \frac{\partial u}{\partial x_i}$. Consequently

$$u \in W^{1,p(x)}(\Omega, \nu)$$

and

$$u_n \to u$$
 in $W^{1,p(x)}(\Omega, \nu)$,

We deduce then that $W^{1,p(x)}(\Omega, \nu)$ is a complete space. If we take $\nu = \frac{\partial u}{\partial x_i}$, we will obtain then

• On another side, seeing that ν satisfies the condition (w1), we prove that $C_0^{\infty}(\Omega)$ is included in $W^{1,p(x)}(\Omega,\nu)$; that enables us to define the following space

$$W_0^{1,p(x)}(\Omega,\nu)=\overline{C_0^\infty(\Omega)}^{\|.\|_{1,p(x),\nu}},$$

who is closed in complete space, then it's complete.

Proposition 4 (Characterization of the dual space $(W_0^{1,p(x)}(\Omega,\nu))^*)$

Let $p(.) \in C_+(\overline{\Omega})$ and ν a vector of weight who satisfies the condition (w1). Then for all $G \in$ $(W_0^{1,p(x)}(\Omega,\nu))^*$, there exist a unique system of functions $(g_0, g_1, ..., g_N) \in L^{p'(x)}(\Omega) \times (L^{p'(x)}(\Omega, \nu^{1-p'(x)}))^N$ such that $\forall f \in W_0^{1,p(x)}(\Omega, \nu):$

$$G(f) = \int_{\Omega} f(x)g_0(x)dx + \sum_{i=1}^N \int_{\Omega} \frac{\partial f}{\partial x_i}g_i(x)dx.$$

Proof

The proof of this proposition is similar to that of [14] (theorem 3.16).

Besides the (w1) assumption, we suppose that the function weight satisfied

(w2)
$$\nu^{-s(x)} \in L^1_{loc}(\Omega)$$

where *s* is a positive function to specify afterwards. Let us introduce the function p_s defined by

$$p_s(x) = \frac{p(x)s(x)}{s(x)+1},$$

we have

$$p_s(x) < p(x)$$
 a.e. in Ω .

and

$$p_{s}^{*}(x) = \frac{Np_{s}(x)}{N-p_{s}(x)} = \frac{Np(x)s(x)}{N(s(x)+1)-p(x)s(x)} \text{ if } p(x)s(x) < N(s(x)+1),$$

$$p_{s}^{*}(x) \text{ arbitrary, else if,}$$

Proposition 5 Let $p, s \in C_+(\overline{\Omega})$ and ν a function weight which satisfies (w1) and (w2). Then $W^{1,p(x)}(\Omega,\nu) \hookrightarrow$ $W^{1,p_s(x)}(\Omega).$

Proof

According to the Hölder inequality, we have

$$\begin{split} & \int_{\Omega} |v(x)|^{p_{s}(x)} dx = \int_{\Omega} |v(x)|^{p_{s}(x)} v^{\frac{p_{s}(x)}{p(x)}} v^{\frac{-p_{s}(x)}{p(x)}} dx \\ & \leq \left(\frac{1}{(\frac{1}{p_{s}})^{-}} + \frac{1}{(s+1)^{-}} \right) |||v(x)|^{p_{s}(x)} v^{\frac{p_{s}(x)}{p(x)}} ||_{\frac{p(x)}{p_{s}(x)}} ||v^{\frac{-p_{s}(x)}{p(x)}}||_{s(x)+1} \\ & \leq C_{0} \bigg(\int_{\Omega} |v(x)|^{p(x)} v(x) dx \bigg)^{\frac{1}{\gamma_{1}}} \bigg(\int_{\Omega} v(x)^{-s(x)} dx \bigg)^{\frac{1}{\gamma_{2}}} \\ & \leq C_{0} \bigg(\int_{\Omega} |v(x)|^{p(x)} v(x) dx \bigg)^{\frac{1}{\gamma_{1}}} \bigg(\int_{\Omega} v(x)^{-s(x)} dx \bigg)^{\frac{1}{\gamma_{2}}} \\ & \leq C_{0} C_{1} \bigg(\int_{\Omega} |v(x)|^{p(x)} v(x) dx \bigg)^{\frac{1}{\gamma_{1}}}, \text{ according to (w2).} \end{split}$$

$$\int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^{p_s(x)} dx \le C_0 C_1 \left(\int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^{p(x)} \nu(x) dx \right)^{\frac{1}{\gamma_1}}$$

where

$$\gamma_{1} = \begin{cases} \left(\frac{p}{p_{s}}\right)_{-} & \text{if} & |||v(x)|^{p_{s}(x)}v^{\frac{p_{s}(x)}{p(x)}}||_{\frac{p(x)}{p_{s}(x)}} \geq 1, \\ \left(\frac{p}{p_{s}}\right)^{+} & \text{if} & |||v(x)|^{p_{s}(x)}v^{\frac{p_{s}(x)}{p(x)}}||_{\frac{p(x)}{p_{s}(x)}} < 1, \end{cases}$$

consequently

$$\begin{aligned} \left\| \frac{\partial u}{\partial x_i}(x) \right\|_{p_s(x)}^{\gamma_2} &\leq \quad C_0 C_1 \bigg(\int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|_{p(x)}^{p(x)} \nu(x) dx \bigg)^{\frac{1}{\gamma_1}} \\ &\leq \quad C_0 C_1 \left\| \frac{\partial u}{\partial x_i}(x) \right\|_{p(x),\nu}^{\frac{\gamma_3}{\gamma_1}} \end{aligned}$$

where

$$\gamma_2 = \begin{cases} (p_s)_- & \text{if} & \|\frac{\partial u}{\partial x_i}(x)\|_{p_s(x)} \ge 1, \\ (p_s)^+ & \text{if} & \|\frac{\partial u}{\partial x_i}(x)\|_{p_s(x)} < 1, \end{cases}$$

and

$$\gamma_{3} = \begin{cases} p^{+} & \text{if} \qquad \|\frac{\partial u}{\partial x_{i}}(x)\|_{p(x),\nu} \geq 1, \\ p_{-} & \text{if} \qquad \|\frac{\partial u}{\partial x_{i}}(x)\|_{p(x),\nu} < 1. \end{cases}$$

thus

$$\|\frac{\partial u}{\partial x_i}\|_{p_s(x)} \le C_0 C_1 \|\frac{\partial u}{\partial x_i}\|_{p(x),\nu}^{\frac{\gamma_3}{\gamma_1 \gamma_2}}, \quad i = 1, 2, \dots, N.$$
(2)

Seeing that

$$p_s(x) < p(x)$$
 a.e. in Ω

then, there is a constant

$$C > 0$$
 such that $||u||_{L^{p_s(x)}(\Omega)} \le C ||u||_{L^{p(x)}(\Omega)}$

we conclude then that

$$W^{1,p(x)}(\Omega,\nu) \hookrightarrow W^{1,p_s(x)}(\Omega).$$

Corollaire 1 Let $p, s \in C_+(\overline{\Omega})$ and ν a fuction weight which satisfies (w1) and (w2). Then $W^{1,p(x)}(\Omega, \nu) \hookrightarrow \hookrightarrow L^{r(x)}(\Omega)$, for $1 \le r(x) < p_s^*(x)$

3 Basic assumption

Let Ω be a bounded open subset of \mathbb{IR}^N , $N \ge 2$, let $p(.) \in C_+(\overline{\Omega})$, and ν a function weight in Ω such that:

$$\nu \in L^1_{loc}(\Omega) \tag{3}$$

$$\nu^{\frac{-1}{p(x)-1}} \in L^1_{loc}(\Omega) \tag{4}$$

and

$$\nu^{-s(x)} \in L^1_{loc}(\Omega) \text{ where } s(x) \in \left] \frac{N}{p(x)}, \infty \right[\cap \left[\frac{1}{p(x) - 1}, \infty \right[$$
(5)

Let *A* Leray-Lions operator defined from $W_0^{1,p(x)}(\Omega, \nu)$ to its dual $W^{-1,p'(x)}(\Omega, \nu^*)$ by

$$Au = -\operatorname{div} a(x, u, \nabla u)$$

where *a* is a Carathéodory function satisfying the following assumptions:

$$|a_{i}(x,r,\zeta)| \leq \beta \nu^{\frac{1}{p(x)}} \left[b(x) + |r|^{\frac{p(x)}{p'(x)}} + \nu^{\frac{1}{p'(x)}} |\zeta|^{p(x)-1} \right], i = 1, .., N.$$

$$(6)$$

$$(6)$$

$$(7)$$

$$[a(x,r,\zeta) - a(x,r,\zeta)](\zeta - \zeta) > 0, \quad \forall \, \zeta \neq \zeta \in \mathbb{R}^{1^{\vee}}.$$
(7)

$$a(x,s,\zeta)\zeta \ge \alpha \nu |\zeta|^{p(x)}.$$
(8)

with b(x) be a positive function in $L^{p'(x)}(\Omega)$, and α , β are two strictly positive constants. On another side, let $g: \Omega \times \mathbb{R} \times \mathbb{R}^N \longrightarrow \mathbb{R}$ a Carathéodory function who satisfied a.e. for $x \in \Omega$ and for all $r \in \mathbb{R}$, $\zeta \in \mathbb{R}^N$ the following conditions:

$$g(x, r, \zeta)r \ge 0. \tag{9}$$

 $|g(x, r, \zeta)| \le d(|r|)(\nu(x)|\zeta|^{p(x)} + c(x)).$ (10)

with $d : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ a continuous, nondecreasing and positive function; whereas c(x) be a positive function in $L^1(\Omega)$.

Moreover, we suppose that *g* checks:

$$\begin{cases} \exists \rho_1 > 0, \exists \rho_2 > 0 \text{ such that :} \\ \text{for } |s| \ge \rho_1, |g(x, s, \xi)| \ge \rho_2 \nu(x) |\xi|^{p(x)} \end{cases}$$
(11)

and

$$f \in L^1(\Omega). \tag{12}$$

We have the following theorem

Theorem 1 Assume that (3) - (12) holds, then the problem (1) admits at least one solution $u \in W_0^{1,p(x)}(\Omega, \nu)$

Remark 2 If $f \in W^{-1,p'(x)}(\Omega, \nu^*)$ then we have $ug(x, u, \nabla u) \in L^1(\Omega)$.

But if $f \in L^1(\Omega)$, we necessarily do not have $ug(x, u, \nabla u) \in L^1(\Omega)$.

Counter example:

Let us consider $\Omega = \{x \in \mathbb{R}^2 : |x| < 1\}$, the ball open unit of \mathbb{R}^2 , let $\lambda \in [\frac{1}{4}, \frac{1}{3}]$, we then have $u(x) = ln^{\lambda}(\frac{1}{|x|}) \in$ $H_0^1(\Omega)$ and $-\Delta u \in L^1(\Omega)$, such that $-\Delta u \ge 0, u|\nabla u|^2 \in$ $L^1(\Omega)$ and $|u|^2 |\nabla u|^2$ does not belong to $L^1(\Omega)$ see [7].

Remark 3 The result of theorem 1 is not true when $g(x, r, \zeta) = 0$, seeing that in the non-degenerate case with p(x) = p constant, $p \le N$, and when $f \in L^1(\Omega)$, a solution of Au = f does not belong to $W_0^{1,p}(\Omega)$ but belongs to $\bigcap_{1 \le q \le \frac{N(p-1)}{N-1}} W_0^{1,q}(\Omega)$, see[8].

Definition 2 Let X a Banach space. An operator A from X to its dual X^* is called as type (M) if for all sequence $(u_n)_n \subset X$ satisfying:

$$\begin{cases} (i) & u_n \to u \text{ weakly in } X\\ (ii) & Au_n \to \chi \text{ weakly in } X^*\\ (iii) & \limsup_{n \to \infty} \langle Au_n, u_n \rangle \leq \langle \chi, u \rangle, \end{cases}$$

then $\chi = Au$.

Remark 4 The theorem 2.1 (p.171 [15]) remains valid if we replace A monotonous by: A of type (M).

4 Approximate problem

Let $(f_n)_n$ a sequence of regularly functions such that $f_n \to f$ in $L^1(\Omega)$ and $||f_n|| \le ||f|| = C_1$.

Let us consider the following approximate problem:

$$(\mathcal{P}_n) \begin{cases} Au_n + g_n(x, u_n, \nabla u_n) = f_n & \text{in } \Omega \\ u_n \in W_0^{1, p(x)}(\Omega, \nu), \end{cases}$$

where $g_n(x, r, \zeta) = \frac{g(x, r, \zeta)}{1 + \frac{1}{n}g(x, r, \zeta)} \chi_{\Omega_n}$, with χ_{Ω_n} is the characteristic function of Ω_n where Ω_n is a sequence of compact subsets which is increasing towards Ω .

We have $g_n(x,r,\zeta)r \ge 0$; $|g_n(x,r,\zeta)| \le |g(x,r,\zeta)|$ and On another side $g_n(x,u+tv,\nabla(u+tv)) \to g_n(x,u+tv,\nabla(u+tv))$ $|g_n(x,r,\zeta)| \leq n.$

Let us consider $G_n: W_0^{1,p(x)}(\Omega,\nu) \longrightarrow W^{-1,p'}(\Omega,\nu^*)$ defined by

$$\langle G_n u, v \rangle = \int_\Omega g_n(x, u, \nabla u) \nabla v dx, u, v \in W^{1, p(x)}_0(\Omega, v).$$

Proposition 6 The operator G_n is bounded.

Proof:

Let *u* and *v* in $W_0^{1,p(x)}(\Omega, v)$, according to the Hölder inequality, we have:

$$\begin{split} \langle G_{n}u,v\rangle &= \int_{\Omega} g_{n}(x,u,\nabla u)\nabla v dx, \\ &\leq \int_{\Omega} |g_{n}(x,u,\nabla u)|v(x)^{\frac{-1}{p(x)}}\nabla v v(x)^{\frac{1}{p(x)}} dx \\ &\leq (\frac{1}{p_{-}} + \frac{1}{p_{-}'})||g_{n}(x,u,\nabla u)|v(x)^{\frac{-1}{p(x)}}||_{p'(x)}||\nabla v v(x)^{\frac{1}{p(x)}}||_{p(x)}, \\ &\leq C \bigg(\int_{\Omega} |g_{n}(x,u,\nabla u)|^{p'(x)}v(x)^{*} dx\bigg)^{\frac{1}{\gamma_{1}}}||v||_{W_{0}^{1,p(x)}(\Omega,v)} \\ &\leq C \bigg(\int_{\Omega} n^{p'(x)}v(x)^{*} dx\bigg)^{\frac{1}{\gamma_{1}}}||v||_{W_{0}^{1,p(x)}(\Omega,v)} \\ &\leq C n^{p_{+}'} \bigg(\int_{\Omega} v(x)^{*} dx\bigg)^{\frac{1}{\gamma_{1}}}||v||_{W_{0}^{1,p(x)}(\Omega,v)} \\ &\leq C'||v||_{W_{0}^{1,p(x)}(\Omega,v)} \end{split}$$

Proposition 7 The operator $A + G_n : W_0^{1,p(x)}(\Omega, \nu) \longrightarrow$ $W^{-1,p'(x)}(\Omega,\nu^*)$ defined by $\forall u, v \in W_0^{1,p(x)}(\Omega,\nu)$,

$$\langle (A+G_n)u,v\rangle = \int_{\Omega} a(x,u,\nabla u)\nabla v \, dx + \int_{\Omega} g_n(x,u,\nabla u)\nabla v \, dx,$$

is bounded, coercif, hemicontinous and of type (M).

Thanks to [15], the approximate problem admits at least a solution.

Proof of the proposition 7

Using (6) and Hölder inequality, we conclude that A is bounded, by taking account of the proposition 6, we will obtain that $A + G_n$ is bounded. The coercivity rise from (8) and from (9). It remains to be shown that $A + G_n$ is hemicontinous, i.e. that:

$$\forall u, v, w \in W_0^{1, p(x)}(\Omega, v),$$

$$\langle (A+G_n)(u+tv), w \rangle \longrightarrow \langle (A+G_n)(u+t_0v), w \rangle$$
, when $t \to t_0$
seeing that for a.e. $x \in \Omega$, we have:

$$a_i(x, u+tv, \nabla(u+tv)) \longrightarrow a_i(x, u+t_0v, \nabla(u+t_0v)), t \longrightarrow t_0,$$

then (6) combined to the lemma 2, implies that $a_i(x, u + tv, \nabla(u + tv)) \rightarrow a_i(x, u + t_0v, \nabla(u + t_0v))$ t_0v)), weakly in $(L^{p'(x)}(\Omega, v^*))^N$, when $t \to t_0$. Finally, $\forall w \in W_0^{1,p(x)}(\Omega,\nu), \forall u,v,w \in W_0^{1,p(x)}(\Omega,\nu)$

$$\langle A(u+tv), w \rangle \longrightarrow \langle A(u+t_0v), w \rangle$$
, when $t \to t_0$.

 $t_0v, \nabla(u + t_0v))$, when $t \to t_0$ a.e. $x \in \Omega$, moreover

$$\int_{\Omega} |g_n(x,u+tv,\nabla(u+tv))|^{p'(x)} dx \le \left(\frac{1}{n}\right)^{p'_+} |\Omega| < \infty,$$

while using, still the lemma 2, we obtain:

$$g_n(x, u + tv, \nabla(u + tv)) \rightarrow g_n(x, u + t_0v, \nabla(u + t_0v))$$

weakly in $L^{p'(x)}(\Omega)$, when $t \to t_0$. Seeing that $w \in L^{p'(x)}(\Omega)$, we will have:

$$\langle G_n(u+tv), w \rangle \longrightarrow \langle G_n(u+t_0v), w \rangle$$
, when $t \to t_0$.

Now, we will show that $A + G_n$ satisfies the property of type (*M*), a.e. that, for all sequence $(u_i)_i \subset$ $W_0^{1,p(x)}(\Omega,\nu)$ checking:

(i)
$$u_j \rightharpoonup u$$
 in $W_0^{1,p(x)}(\Omega, \nu)$
(ii) $(A + G_n)u_j \rightharpoonup \chi$ weakly in $W^{-1,p'(x)}(\Omega, \nu^*)$
(iii) $\limsup_{j \to \infty} \langle (A + G_n)u_j, u_j - u \rangle \leq 0$,

then $\chi = (A + G_n)u$. Indeed:

$$\begin{split} \int_{\Omega} g_n(x, u_j, \nabla u_j)(u_j - u) dx &\leq \|g_n(x, u_j, \nabla u_j)\|_{p'(x)} \|u_j - u\|_{p(x)} \\ &\leq C \bigg(\int_{\Omega} |g_n(x, u_j, \nabla u_j)|^{p'(x)} dx \bigg)^{\frac{1}{\nu}} \|u_j - u\|_{p(x), \nu} \quad \text{Thus} \\ &\leq C(\frac{1}{n})^{p'_+} |\Omega| \|u_j - u\|_{p(x), \nu} \longrightarrow 0 \text{ when } j \to \infty. \\ &\qquad \lim_{j \to \infty} \langle G_n u_j, u_j - u \rangle = 0. \end{split}$$

consequently, according to (iii), we obtain

$$\limsup_{j\to\infty} \langle Au_j, u_j - u \rangle \le 0,$$

and seeing that A is pseudo-monotonous [11], we deduce that

$$Au_i \rightarrow Au$$
 weakly in $W^{-1,p'(x)}(\Omega, \nu^*)$

and $\lim_{i\to\infty} \langle Au_i, u_i - u \rangle = 0.$ On another side

$$0 = \lim_{j \to \infty} \int_{\Omega} a(x, u_j, \nabla u_j) \nabla(u_j - u) dx$$

=
$$\lim_{j \to \infty} \left(\int_{\Omega} \left(a(x, u_j, \nabla u_j) - a(x, u_j, \nabla u) \right) \nabla(u_j - u) dx$$

+
$$\int_{\Omega} a(x, u_j, \nabla u) \nabla(u_j - u) dx \right).$$

Moreover we have $a(x, u_i, \nabla u) \longrightarrow a(x, u, \nabla u)$ strongly in $(L^{p'(x)}(\Omega, \nu^*))^N$, then

$$\lim_{j\to\infty}\int_{\Omega}a(x,u_j,\nabla u)\nabla(u_j-u)dx=0.$$

Thus

$$\lim_{j\to\infty}\int_{\Omega}\left(a(x,u_j,\nabla u_j)-a(x,u_j,\nabla u)\right)\nabla(u_j-u)dx=0.$$

Using the lemma 3, see blow, we conclude that

$$\nabla u_j \longrightarrow \nabla u$$
 a.e. in Ω , when $j \to \infty$.

Consequently

$$g_n(x, u_j, \nabla u_j) \longrightarrow g_n(x, u, \nabla u)$$
 a.e. in Ω , when $j \to \infty$.

Seeing that $|g_n(x, u_j, \nabla u_j)| \le n \in L^{p'(x)}(\Omega)$, then according to the dominated convergence theorem of Lebesgue, we obtain:

$$g_n(x, u_j, \nabla u_j) \longrightarrow g_n(x, u, \nabla u)$$
 in $L^{p'(x)}(\Omega)$.

and seeing that $v \in L^{p(x)}(\Omega)$, then we have: $\int_{\Omega} g_n(x, u_j, \nabla u_j) v dx \longrightarrow \int_{\Omega} g_n(x, u, \nabla u) v dx \text{ when } j \rightarrow \infty$, that means

$$G_n u_j \rightharpoonup G_n u$$
 in $W^{-1,p(x)}(\Omega, \nu^*)$ when $j \rightarrow \infty$.

Finally

 $Au_j + G_n u_j \rightarrow Au + G_n u = \chi$ in $W^{-1,p'(x)}(\Omega, \nu^*)$ when $j \rightarrow \infty$.

5 Technical lemmas

Lemma 2 Let γ a function weight in Ω , $r(.) \in C_+(\overline{\Omega})$, $g \in L^{r(x)}(\Omega, \gamma)$ and $(g_n)_n \subset L^{r(x)}(\Omega, \gamma)$ such that $||g_n||_{r(x),\gamma} \leq C$.

If $g_n \to g$ a.e. in Ω then $g_n \to g$ weakly in $L^{r(x)}(\Omega, \gamma)$.

Proof:

Let $n_0 \ge 1$, let us pose

$$E(n_0) = \left\{ x \in \Omega : |g_n(x) - g(x)| \le 1, \forall n \ge n_0 \right\}.$$

We have

 $mes(E(n_0)) \rightarrow mes(\Omega)$, when $n_0 \rightarrow \infty$.

Let

$$F = \left\{ \varphi_{n_0} \in L^{r'(x)}(\Omega, \gamma^*) : \varphi_{n_0} = 0 \text{ a.e. in } \Omega \setminus E(n_0) \right\}.$$

Let us show that *F* is dense in $L^{r'(x)}(\Omega, \gamma^*)$:

let $f \in L^{r'(x)}(\Omega, \gamma^*)$, let us pose:

$$f_{n_0}(x) = \begin{cases} f(x) & if \ x \in E(n_0), \\ 0 & if \ x \in \Omega \setminus E(n_0). \end{cases}$$

We have

$$\begin{split} \rho_{r'(x),\gamma^*}(f_{n_0}(x) - f(x)) &= \int_{\Omega} |f_{n_0}(x) - f(x)|^{r'(x)} \gamma^* dx \\ &= \int_{E(n_0)} |f_{n_0}(x) - f(x)|^{r'(x)} \gamma^* dx \\ &+ \int_{\Omega \setminus E(n_0)} |f_{n_0}(x) - f(x)|^{r'(x)} \gamma^* dx, \end{split}$$

$$= \int_{\Omega \setminus E(n_0)} |f_{n_0}(x) - f(x)|^{r'(x)} \gamma^* dx,$$

$$= \int_{\Omega} |f(x)|^{r'(x)} \gamma^* \chi_{\Omega \setminus E(n_0)}(x) dx.$$

Let us pose $\psi_{n_0} = |f(x)|^{r(x)} \gamma^* \chi_{\Omega \setminus E(n_0)}(x)$. we have

$$\psi_{n_0} \rightarrow 0 \quad \text{a.e.in } \Omega,$$

and
 $|\psi_{n_0}| \leq |f(x)|^{r'(x)} \gamma^*,$

according to the dominate convergence theorem, we will have

$$\rho_{r'(x),\gamma^*}(f_{n_0}(x) - f(x)) \to 0$$
, when $n_0 \to \infty$,

what implies that *F* is dense in $L^{r'(x)}(\Omega, \gamma^*)$. let us show, now, that

$$\lim_{n\to\infty}\int_{\Omega}\varphi(x)(g_n(x)-g(x))dx=0, \ \forall\varphi\in F.$$

Seeing that $\varphi = 0$ on $\Omega \setminus E_{n_0}$, it is thus enough to prove that

$$\lim_{n\to\infty}\int_{E_{n_0}}\varphi(x)(g_n(x)-g(x))dx=0.$$

Let us pose $\phi_n = \varphi(g_n - g)$, we have

$$\begin{cases} |\varphi(x)||(g_n(x) - g(x))| \leq |\varphi(x)| & \text{in } E_{n_0}, \\ and \\ \phi_n \longrightarrow 0, & \text{a.e. in } \Omega \end{cases}$$

According to the dominate convergence theorem, we have

 $\phi_n \longrightarrow 0$ a.e. in $L^1(\Omega)$,

what implies that

$$\lim_{n\to\infty}\int_{\Omega}\varphi(x)(g_n(x)-g(x))dx=0, \ \forall\varphi\in F_{\mathcal{A}}$$

and by density of *F* in $L^{r'(x)}(\Omega, \gamma^*)$, we conclude that:

$$\lim_{n\to\infty}\int_{\Omega}\varphi(x)g_n(x)dx=\int_{\Omega}\varphi(x)g(x)dx,\;\forall\varphi\in L^{r'(x)}(\Omega,\gamma^*),$$

that means

$$g_n \rightarrow g$$
 weakly in $L^{r(x)}(\Omega, \gamma)$.

_

Lemma 3 Assume that (3.1), (3.3), (3.5) hold, let
$$(u_n)_n$$

a sequence in $W_0^{1,p(x)}(\Omega, \nu)$ and $u \in W_0^{1,p(x)}(\Omega, \nu)$.
If $\begin{cases} u_n \rightarrow u \text{ weakly in } W_0^{1,p(x)}(\Omega, \nu), \\ and \int_{\Omega} \left(a(x, u_n, \nabla u_n) - a(x, u_n, \nabla u) \right) (\nabla u_n - \nabla u) dx \rightarrow 0 \\ then u_n \longrightarrow u \text{ strongly in } W_0^{1,p(x)}(\Omega, \nu). \end{cases}$

www.astesj.com

Proof:

Let us pose

$$D_n = \left(a(x, u_n, \nabla u_n) - a(x, u_n, \nabla u)\right) (\nabla u_n - \nabla u),$$

according the (3.5), we have D_n is a positive function. We have also $D_n \rightarrow 0$ in $L^1(\Omega)$.

Seeing that

$$u_n \rightarrow u$$
 weakly in $W_0^{1,p(x)}(\Omega, \nu)$,

we have then

$$u_n \longrightarrow u$$
 strongly in $L^{q(x)}(\Omega, \sigma)$,

and consequently

$$u_n \longrightarrow u$$
 a.e. in Ω .

Thanks to $D_n \to 0$ a.e. in Ω , there is then $B \subset \Omega$ such that mes(B) = 0 and for $x \in \Omega \setminus B$, we have

$$|u(x)| < \infty, |\nabla u(x)| < \infty, u_n(x) \longrightarrow u(x) \text{ and } D_n(x) \longrightarrow 0$$

Let us pose

$$\xi_n = \nabla u_n(x), \ \xi = \nabla u(x),$$

we have

$$D_{n}(x) \geq \alpha \sum_{i=1}^{N} \omega_{i} |\xi_{n}^{i}|^{p(x)} + \alpha \sum_{i=1}^{N} \omega_{i} |\xi^{i}|^{p(x)} - \sum_{i=1}^{N} \omega_{i}^{\frac{1}{p(x)}} [k(x) + \sigma^{\frac{1}{p'(x)}} |u_{n}|^{\frac{q(x)}{p'(x)}} + \sum_{j=1}^{N} \omega_{j}^{\frac{1}{p'(x)}} |\xi_{n}^{j}|^{p(x)-1}] |\xi^{i}| - \sum_{i=1}^{N} \omega_{i}^{\frac{1}{p'(x)}} [k(x) + \sigma^{\frac{1}{p'(x)}} |u_{n}|^{\frac{q(x)}{p'(x)}} + \sum_{j=1}^{N} \omega_{j}^{\frac{1}{p'(x)}} |\xi^{j}|^{p(x)-1}] |\xi_{n}^{i}|, \geq \alpha \sum_{i=1}^{N} \omega_{i} |\xi_{n}^{i}|^{p(x)} - C(x)[1 + \sum_{j=1}^{N} \omega_{j}^{\frac{1}{p'(x)}} |\xi_{n}^{j}|^{p(x)-1} + \sum_{i=1}^{N} \omega_{i}^{\frac{1}{p'(x)}} |\xi_{n}^{i}|]$$

$$(13)$$

where C(x) is a function depending on x and not on n. seeing that $u_n(x) \longrightarrow u(x)$, we have $|u_n(x)| \le M_x$, where M_x is positive. Then by a standard argument, we will have $|\xi_n|$ is uniformly bounded compared to n; indeed: (4.4) becomes

$$D_{n}(x) \geq \sum_{i=1}^{N} \omega_{i} |\xi_{n}^{i}|^{p(x)} (\alpha \omega_{i} - \frac{C(x)}{N |\xi^{i}|^{p(x)}} - \frac{C(x) \omega_{i}^{\overline{p'(x)}}}{|\xi_{n}^{i}|} - \frac{C(x) \omega_{i}^{\frac{1}{p'(x)}}}{|\xi_{n}^{i}|^{p(x)-1}}).$$

If $|\xi_n| \to \infty$, there is at least i_0 such that $|\xi_n^{i_0}| \to \infty$, what will give us $D_n(x) \to \infty$; what is absurd.

Let ξ^* an adherent point of ξ_n , we have $|\xi^*| < \infty$ and by continuity of the operator *a* compared to two last variables, we will have:

$$(a(x, u, \xi^*) - a(x, u, \xi))(\xi^* - \xi) = 0,$$

and according to (3.2), we obtain $\xi^* = \xi$.

the unicity of the adherent point implies $\nabla u_n(x) \rightarrow \nabla u(x)$ a.e. in Ω .

Seeing that the sequence $(a(x, u_n, \nabla u_n))_n$ is bounded in $(L^{p(x)}(\Omega, \nu))^N$, and $a(x, u_n, \nabla u_n) \longrightarrow a(x, u, \nabla u)$ a.e. in Ω , then according the lemma 2 we obtain

$$a(x, u_n, \nabla u_n) \rightarrow a(x, u, \nabla u)$$
 weakly in $(L^{p(x)}(\Omega, \nu))^N$

let us pose $\tilde{y_n} = a(x, u_n, \nabla u_n) \nabla u_n$ and $\tilde{y} = a(x, u, \nabla u) \nabla u$, in the same way that in [4], we can write

 $\widetilde{y_n} = a(x, u_n, \nabla u_n) \nabla u_n \longrightarrow \widetilde{y} = a(x, u, \nabla u) \nabla u$ strongly in $L^1(\Omega)$. According to (3.3), we have

$$\alpha \sum_{i=1}^{N} \nu |\frac{\partial u_n}{\partial x_i}|^{p(x)} \leq \widetilde{y_n}.$$

let

$$z_n = \sum_{i=1}^N \nu |\frac{\partial u_n}{\partial x_i}|^{p(x)}, \ z = \sum_{i=1}^N \nu |\frac{\partial u}{\partial x_i}|^{p(x)}, \ y_n = \frac{\widetilde{y_n}}{\alpha}, \ y = \frac{\widetilde{y}}{\alpha}$$

Thanks to Fatou lemma, we obtain

$$\int_{\Omega} 2y dx \le \liminf_{n \to \infty} \int_{\Omega} y + y_n - |z_n - z| dx,$$

ie

$$0 \leq -\limsup_{n \to \infty} \int_{\Omega} |z_n - z| dx,$$

then

$$0 \le \liminf_{n \to \infty} \int_{\Omega} |z_n - z| dx \le \limsup_{n \to \infty} \int_{\Omega} |z_n - z| dx \le 0,$$

what implies

$$\nabla u_n \longrightarrow \nabla u$$
 in $(L^{p(x)}(\Omega, \nu))^N$,

consequently

$$u_n \longrightarrow u \text{ in } W_0^{1,p(x)}(\Omega, \nu).$$

Definition 3 for any k > 0 and $s \in \mathbb{R}$, the truncature function $T_k(.)$ is defined as:

$$T_k(s) = \begin{cases} s & if \quad |s| \le k, \\ k \frac{s}{|s|} & if \quad |s| > k. \end{cases}$$

Lemma 4 Let $(u_n)_n$ a sequence from $W_0^{1,p(x)}(\Omega, \nu)$ such that $u_n \rightarrow u$ weakly in $W_0^{1,p(x)}(\Omega, \nu)$. Then $T_k(u_n) \rightarrow T_k(u)$ weakly in $W_0^{1,p(x)}(\Omega, \nu)$.

Proof

We have $u_n \rightarrow u$ weakly in $W_0^{1,p(x)}(\Omega, \nu)$, and $W_0^{1,p(x)}(\Omega, \nu) \hookrightarrow L^{p(x)}(\Omega)$, we will have $u_n \rightarrow u$ strongly in $L^{p(x)}(\Omega)$ and a.e. in Ω , consequently $T_k(u_n) \rightarrow T_k(u_n)$ a.e. in Ω . On another side

$$\begin{split} \|T_{k}(u_{n})\|_{p(x),\nu}^{\theta_{1}} &\leq \int_{\Omega} |\nabla T_{k}(u_{n})|^{p(x)}\nu(x)dx, \\ &\leq \int_{\Omega} |\nabla T_{k}^{'}(u_{n})||\nabla u_{n}|^{p(x)}\nu(x)dx, \\ &\leq \int_{\Omega} |\nabla u_{n}|^{p(x)}\nu(x)dx, \\ &\leq \|u_{n}\|_{p(x),\nu}^{\theta_{2}}, \end{split}$$

where

$$\theta_1 = \begin{cases} p^+ & \text{if } ||T_k(u_n)||_{p(x),\nu} \le 1, \\ p_- & \text{if } ||T_k(u_n)||_{p(x),\nu} > 1, \end{cases}$$

and

$$\vartheta_1 = \left\{ \begin{array}{ll} p^+ & \mbox{si} \, \| u_n \|_{p(x),\nu} \geq 1, \\ p_- & \mbox{si} \, \| u_n \|_{p(x),\nu} < 1. \end{array} \right.$$

Thus $(T_k(u_n))_n$ is bounded in $W_0^{1,p(x)}(\Omega, \nu)$, consequently $T_k(u_n) \rightarrow T_k(u)$ weakly in $W_0^{1,p(x)}(\Omega, \nu)$.

6 **Proof of theorem** 1

Step1: a priori estimate

The problem (\mathcal{P}_n) admits at least a solution u_n belonging to $W_0^{1,p(x)}(\Omega, \nu)$. Choosing $T_k(u_n)$ as test function in (\mathcal{P}_n) , and seeing that $\int_{\Omega} g_n(x, u_n, \nabla u_n) T_k(u_n) dx \ge 0$, we obtain: $\int_{\Omega} a(x, u_n, \nabla T_k(u_n)) \nabla T_k(u_n) dx \le \int_{\Omega} f_n T_k(u_n) dx.$

Using (5), we deduce that

$$\alpha \int_{\Omega} \nu(x) |\nabla T_k(u_n)|^{p(x)} dx \le kC_1,$$

that means

$$\int_{\Omega} \nu(x) |\nabla T_k(u_n)|^{p(x)} dx \le \frac{k}{\alpha} C_1.$$

Consequently

$$\left\|\nabla T_k(u_n)\right\|_{p(x),\nu}^{\gamma} \le C_2,$$

where

$$\gamma = \begin{cases} p^+ & if \quad \|\nabla T_k(u_n)\|_{p(x),\nu} \ge 1, \\ p_- & if \quad \|\nabla T_k(u_n)\|_{p(x),\nu} < 1. \end{cases}$$

On he other hand, we have

$$\int_{\Omega} a(x, u_n, \nabla T_k(u_n)) \nabla T_k(u_n) dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) T_k(u_n) dx = \int_{\Omega} f_n T_k(u_n) dx.$$

What implies

$$\int_{\Omega} g_n(x, u_n, \nabla u_n) T_k(u_n) dx \le \int_{\Omega} |f_n| k dx.$$

Thus

$$\int_{\{|u_n|>k\}} k \frac{u_n}{|u_n|} g_n(x, u_n, \nabla u_n) dx$$

+
$$\int_{\{|u_n|\le k\}} g_n(x, u_n, \nabla u_n) u_n dx \le \int_{\Omega} |f_n| k dx$$

Consequently

$$k \int_{\{|u_n|>k\}} g_n(x, u_n, \nabla u_n) dx \le kC_1$$

However

$$\int_{\Omega} \nu(x) |\nabla u_n|^{p(x)} dx = \int_{\{|u_n| > k\}} \nu(x) |\nabla u_n|^{p(x)} dx$$
$$+ \int_{\Omega} \nu(x) |\nabla u_n|^{p(x)} dx.$$

Then for $k > \rho_1$, we will have:

$$\int_{\Omega} \nu(x) |\nabla u_n|^{p(x)} dx \le \frac{1}{\rho_2} \int_{\{|u_n| > k\}} g_n(x, u_n, \nabla u_n) dx + C_2 \le C_4$$

What implies that a sequence $(u_n)_n$ is bounded in $W_0^{1,p(x)}(\Omega, \nu)$.

Step2: Strong convergence of truncations

Seeing that $(u_n)_n$ is bounded in $W_0^{1,p(x)}(\Omega, \nu)$, and $W_0^{1,p(x)}(\Omega, \nu) \hookrightarrow L^{p(x)}(\Omega)$, we can extract a subsequence of $(u_n)_n$, still noted $(u_n)_n$, and there is $u \in W_0^{1,p(x)}(\Omega, \nu)$ such that

$$u_n \rightarrow u$$
 in $W_0^{1,p(x)}(\Omega, \nu)$,
 $u_n \rightarrow u$ a.e. in Ω ,

We want to show that $T_k(u_n) \to T_k(u)$ strongly in $W_0^{1,p(x)}(\Omega, \nu)$.

Let $z_n = T_k(u_n) - T_k(u)$, let us pose $v_n = \varphi_{\lambda}(z_n)$, where $\varphi_{\lambda}(s) = se^{\lambda s^2}$.

Choosing v_n as test function in (\mathcal{P}_n) .

We are $(v_n)_n$ is bounded in $W_0^{1,p(x)}(\Omega, \nu)$, and $v_n \to 0$ a.e. in Ω , then according to lemma 4, we obtain $v_n \to 0$ weakly in $W_0^{1,p(x)}(\Omega, \nu)$,.

thus $\langle f_n, v_n \rangle \to 0$, because $v_n \to 0$ weakly in $L^{\infty}(\Omega)$, and $f_n \to f$ strongly in $L^1(\Omega)$.

Consequently

$$\eta_{1n} = \langle Au_n, v_n \rangle + \langle G_n u_n, v_n \rangle \longrightarrow 0.$$

Seeing that $g_n(x, u_n, \nabla u_n) \ge 0$ on $\{x \in \Omega : |u_n| \ge k\}$, then we have:

$$\langle Au_n, v_n \rangle + \int_{\{x \in \Omega: |u_n| \le k\}} g_n(x, u_n, \nabla u_n) v_n dx \le \eta_{1n}.$$

Thus

$$\langle Au_n, v_n \rangle - |\int_{\{x \in \Omega: |u_n| \le k\}} g_n(x, u_n, \nabla u_n) v_n dx| \le \eta_{1n}.$$
(14)

however

however
$$\begin{aligned} &\times \left[\nabla T_k(u_n) - \nabla T_k(u) \right] \\ &\langle Au_n, v_n \rangle = \int_{\Omega} a(x, u_n, \nabla u_n) \nabla (T_k(u_n) - T_k(u)) \varphi'_{\lambda}(z_n) dx \leq 2(\eta_{1n} - \eta_{2n} + \eta_{4n}), \longrightarrow 0; \text{ when } n \to \infty. \\ &\text{Thanks to lemma 3, we deduce that} \\ &= \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla (T_k(u_n) - T_k(u)) \varphi'_{\lambda}(z_n) dx \\ &- \int_{|u_n| > k} a(x, u_n, \nabla u_n) \nabla T_k(u) \varphi'_{\lambda}(z_n) dx \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \nabla (T_k(u_n) - \lim_{in \in I} U^1(\Omega)) \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \nabla (T_k(u_n) - \lim_{in \in I} U^1(\Omega)) \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \nabla (T_k(u_n) - \lim_{in \in I} U^1(\Omega)) \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n)) \right] \\ &= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k(u_n) - a(x, T_k(u_n), \nabla T_k($$

We have

$$\int_{E} |g_{n}(x, u_{n}, \nabla u_{n})| dx = \int_{E \cap X_{m}^{n}} |g_{n}(x, u_{n}, \nabla u_{n})| dx$$

$$+ \int_{E \cap (X_{m}^{n})^{c}} |g_{n}(x, u_{n}, \nabla u_{n})| dx,$$

$$\leq d(m) \int_{E} (\nu(x) |\nabla T_{m}(u_{n})|^{p(x)}$$

$$+ c(x)) dx + \int_{(X_{m}^{n})^{c}} |g_{n}(x, u_{n}, \nabla u_{n})| dx.$$
(19)

Thanks to (17) and seeing $c(x) \in L^1(\Omega)$, there is $\delta > 0$ such that for all *E*: $|E| < \delta$, then

$$d(m) \int_{E} (\nu(x) |\nabla T_{m}(u_{n})|^{p(x)} + c(x)) dx \le \frac{\eta}{2}.$$
 (20)

Let ψ_m a function defined by:

$$\psi_m(x) = \begin{cases} 0 & \text{if } |s| \le m - 1, \\ 1 & \text{if } s \ge m, \\ 1 & \text{if } s \le -m, \\ \psi_m^{'}(x) = 1 & \text{if } m - 1 \le |s| \le m, \end{cases}$$

we have $\psi_m(u_n) \in W_0^{1,p(x)}(\Omega,\nu)$, choosing $\psi_m(u_n)$ as test function in (\mathcal{P}_n) , we obtain:

$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n \psi'_m(u_n) dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) \psi_m(u_n) dx$$
$$= \int_{\Omega} f_n \psi_m(u_n) dx.$$

According (9) and (10), we deduce that

$$\int_{\{|u_n|>m-1\}} |g_n(x, u_n, \nabla u_n)| dx \le \int_{\{|u_n|>m-1\}} |f_n| dx.$$

what implies

$$\int_{\{|u_n|>m\}} |g_n(x, u_n, \nabla u_n)| dx \le \int_{\{|u_n|>m-1\}} |f_n| dx.$$

however $f_n \to f$ in $L^1(\Omega)$ and $|\{|u_n| > m-1\}| \to 0$ when $m \to \infty$, uniformly in *n*, then for *m* big enough we have;

$$\int_{\{|u_n|>m-1\}} |f_n| dx \leq \frac{\eta}{2}, \, \forall n \in \mathbb{I}\mathbb{N}.$$

$$\begin{cases} \nabla T_k(u)\chi_{\{|u_n>k|\}} \to 0 \text{ strongly in } (L^{p(x)}(\Omega, \nu))^N, \\ (a(x, u_n, \nabla u_n))_n \text{ is bounded in } (L^{p'(x)}(\Omega, \nu^*))^N, \\ \Rightarrow \eta_{2n} \longrightarrow 0 \text{ when } n \to \infty. \\ \text{On another side} \\ | \int_{\{|u_n| \le k\}} g_n(x, u_n, \nabla u_n) \nu_n dx | \\ \int_{\{|u_n| \le k\}} g_n(x, u_n, \nabla u_n) \nu_n dx | \end{cases}$$

$$\leq \int_{\{|u_n| \le k\}} |g_n(x, u_n, \nabla u_n)| |v_n| dx$$

$$\leq \int_{\{|u_n| \leq k\}} d(k)(c(x) + \nu(x)|\nabla u_n|^{p(x)}|v_n|dx$$

$$\leq d(k) \int_{\{|u_n| \leq k\}} c(x)|\varphi_{\lambda}(z_n)|dx \qquad (16)$$

$$+ \frac{d(k)}{\alpha} \int_{\{|u_n| \leq k\}} a(x, u_n, \nabla u_n) \nabla u_n |\varphi_{\lambda}(z_n)|dx$$

$$\leq \eta_{3n} + \frac{d(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) |\varphi_{\lambda}(z_n)| dx$$

$$\leq \frac{d(k)}{\alpha} \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n)) \right)$$

$$\times \left[\nabla T_k(u_n) - \nabla T_k(u) \right] |\varphi_{\lambda}(z_n)| dx + \eta_{4n},$$
where

$$\eta_{3n} = d(k) \int_{\{|u_n| \le k\}} c(x) |\varphi_{\lambda}(z_n)| dx \to 0 \text{ when } n \to \infty,$$

and
$$\eta_{4n} = \frac{d(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u) |\varphi_{\lambda}(z_n)| dx$$

 $+ \frac{d(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u)) (\nabla T_k(u_n) - \nabla T_k(u)) |\varphi_{\lambda}(z_n)| dx$
 $+ \eta_{3n} \to 0$ when $n \to \infty$,
If $\lambda \ge (\frac{d(k)}{2})^2$ then by a simple calculation we have

If $\lambda \ge (\frac{\alpha}{\alpha})^2$ then, by a simple calculation, we have

$$\varphi_{\lambda}^{'}(s) - \frac{d(k)}{\alpha} |\varphi_{\lambda}(s)| \ge \frac{1}{2}.$$

By combining this last inequality with (14), (15) and (16), we obtain

$$\int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u_n)) \right)$$

www.astesj.com

Thus

$$\int_{\{|u_n|>m\}} |g_n(x,u_n,\nabla u_n)| dx \le \frac{\eta}{2}, \,\forall n \in I\!\!N.$$
(21)

Combining (19), (20) and (21), we deduce that

$$\int_{E} |g_n(x, u_n, \nabla u_n)| dx \le \eta, \text{ for all } n \in IN.$$

That means that the sequence $(g_n(x, u_n, \nabla u_n))_n$ is equiintegrable, but $g_n(x, u_n, \nabla u_n) \rightarrow g(x, u, \nabla u)$ a.e. in Ω , then thanks to Vitali theorem, we deduce that

$$g_n(x, u_n, \nabla u_n) \rightarrow g(x, u, \nabla u)$$
 strongly in $L^1(\Omega)$.

step4: passing to the limit

Seeing that $(u_n)_n$ is bounded in $W_0^{1,p(x)}(\Omega, \nu)$, and thanks to (6), we conclude that $(a(x, u_n, \nabla u_n))_n$ is bounded in $(L^{p'(x)}(\Omega, \nu^*))^N$, and seeing that $a(x, u_n, \nabla u_n) \rightarrow a(x, u, \nabla u)$ a.e. in Ω , then according to the lemma 2, we obtain that

$$a(x, u_n, \nabla u_n) \rightarrow a(x, u, \nabla u)$$
 weakly in $(L^{p^*(x)}(\Omega, \nu^*))^N$,

while making $n \to \infty$, we obtain $\forall v \in W_0^{1,p(x)}(\Omega, v) \cap L^{\infty}(\Omega)$,

$$\langle Au, v \rangle + \int_{\Omega} g(x, u, \nabla u) v dx = \int_{\Omega} f v dx$$

7 Example of application

Let Ω be a bounded open subset of \mathbb{R}^N , $N \ge 2$, and let $p(x), q(x) \in C_+(\overline{\Omega})$. Let us pose:

$$\begin{cases} a_i(x, r, \zeta) = v(x)|\zeta_i|^{p(x)-1}sgn(\zeta_i), \ i = 1, ..., N, \\ and \\ g(x, r, \zeta) = \rho r|r|^{q(x)}v(x)|\zeta|^{p(x)}, \rho > 0, \end{cases}$$

were v(x) a function weight in Ω . The function a_i , i = 1,...,N, which satisfies the assumptions of theorem (6), (7) and (8); and well as the function g satisfies (9), (10) and (11), with $|s| \ge \rho_1 = 1$ and $\rho_2 = \rho > 0$, consequently the assumptions of theorem 1 are satisfied; thus for $f \in L^1(\Omega)$, the following theorem, with $v(x) = d^{\lambda}(x)$:

$$(\mathcal{E}) \begin{cases} \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(d^{\lambda}(x) | \frac{\partial u}{\partial x_i} |^{p(x)-1} sgn(\frac{\partial u}{\partial x_i}) \right) \\ +\rho u | u |^{q(x)} \sum_{i=1}^{N} \frac{\partial}{\partial x_i} d^{\lambda}(x) | \frac{\partial u}{\partial x_i} |^{p(x)} = f \text{ in } \mathcal{D}'(\Omega), \\ u \in W_0^{1,p(x)}(\Omega, d^{\lambda}(x)) \text{ and} \\ \rho u | u |^{q(x)} \sum_{i=1}^{N} \frac{\partial}{\partial x_i} d^{\lambda}(x) | \frac{\partial u}{\partial x_i} |^{p(x)} \in L^1(\Omega), \end{cases}$$

admits at least one solution $u \in W_0^{1,p(x)}(\Omega, d^{\lambda}(x))$.

References

- Y. Akdim, E. Azroul and A. Benkirane, "Existence of solution for quasilinear degenerated elliptic equation.", Electronic J. Equ. 71, 1-19, 2001.
- E. Azroul, A. Barbara and H. Hjiej, "Strongly nonlinear p(x)elliptic problems with second member L¹-dual.", African Diaspora Journal of Mathematics. 16, Number 2, 11722, 2014.
- 3. E. Azroul, H. Hjiej and A. Touzani, "Existence and regularity of entropy solutions for strongly nonlinear p(x)-elliptic equations.", Electronic journal of differential equations. **68**, 1-27, 2013.
- 4. M. B. Benboubker, E. Azroul, A. Barbara, "Quasilinear Elliptic Problems with non standard growth.", EJDE, **62**, 1-16, 2011.
- A. Benkirane and A. Elmahi, "Strongly nonlinear elliptic unilateral problems having natural growth terms and L¹ data.", Rendiconti di matematica, Serie VII, 18, 28917303, 1998.
- A. Bensoussan, L. Boccardo and F. Murat, "On a nonlinear partial differential equation having natural growth terms and unbounded solution.", Ann. Inst. Henri Poincaré, 4, 347-364, 1988.
- L. Boccardo and T. Gallouët, "Strongly nonlinear elliptic equations having natural growth terms and L¹.", Nonlinear Analysis Theory methods and applications, **19**(6), 573-579, 1992.
- L. Boccardo and T. Gallouët, "Nonlinear elliptic equations with right hand side measures.", Comm. P.D.E., 17, 641-655, 1992.
- 9. H. Brezis and W. Strauss, "Semilinear second-order elliptic equations in *L*¹.", J. Math. Soc. Japan, **25**(4), 565-590, 1973.
- T. Del Vecchio, "Nonlinear elliptic equations with measure data.", Potential Analysis, 4, 185-203, 1995.
- P. Drabek, A. Kufner and V. Mustonen, "Pseudomonotonicity and degenerated or singular elliptic operators.", Bull. Austral. Math. Soc., 58, 213-221, 1998.
- X. L. Fan and Q. H. Zhang, "Existence for p(x)-Laplacien Direchlet problem.", Nonlinear Analysis, 52, 1843-1852, 2003.
- X. L. Fan and D. Zhao, "On the generalized Orlicz-Sobolev Space W^{k,p(x)}(Ω).", J. Gansu Educ. College, 12(1), 1-6, 1998.
- 14. O. Kovácik and J. Rákosnik, "On Spaces $L^{p(x)}$ and $W^{k,p(x)}$.", Czechoslovak Math. J. , 41, 592-618, 1991.
- 15. J. L. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires.", Dunod, 1969.
- V. M. Monetti and L. Randazzo, "Existence results for nonlinear elliptic equations with *p*-growth in the gradient.", Riceeche di Matimaica, XLIX(1), 163-181, 2000.
- D. Zhao, X. J. Qiang and X. L. Fan, "On generalized Orlicz Spaces L^{p(x)}(Ω).", J. Gansu Sci., 9(2), 1-7, 1997.