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—div a(x,u,Vu) + g(x, u, Vu)

In this paper, we prove the existence of a solution of the strongly
nonlinear degenerate p(x)-elliptic equation of type:

in Q),
on 0Q,

f
u =20

where Q) is a bounded open subset of RN N>2 aisa Carathéodory
function from Q x IR x RN into IRN, who satisfies assumptions of

Truncations growth, ellipticity and strict monotonicity. The nonlinear term g:
Q x IR x IRN — IR checks assumptions of growth, sign condition and
coercivity condition, while the right hand side f belongs to L'(Q).
1 Introduction Let consider the following degenerate p(x)-elliptic

Let () be a bounded open subset of RN, N > 2, let Q)
its boundary and p(x) € C(Q) with p(x) > 1.

Let v be a weight function in (), ie: v measurable and
strictly positive a.e. in (). We suppose furthermore,
that the weight function satisfies also the integrability
conditions defined in section 2.

Let us consider the following degenerate p(x)-elliptic
problem with boundary condition

P) Au+g(x,u,Vu) f inQ,
u =0 on JdQ,

where A is a Leray-Lions operator defined from
WyPY(Q,v) to its dual WLP'®(Q,v%), with v*
vlfp/(x)’ by :

Au = —diva(x,u,Vu).
where a is a Carathéodory function from () x IR x
RN — IRN who satisfies assumptions of growth, el-
lipticity and strict monotonicity, while the nonlinear
term g: QO x IR x IRN — IR checks assumptions of sign
and growth. We suppose moreover that g checks the
following condition of coercivity:

dp;>0,3p,>0 suchthat:
for[s| = p1, 1g(x,5,&)| = p2v(x)[E[P)

We suppose also that the second member f be-
longs to L1(Q).
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problem of Dirichlet:

{ Au+g(x,u,Vu) = f in D(Q),

1
u e W()Lp(x)(Q,v), g(x,u, Vu) e LY(Q). (1)

In the case where p is constant and without weight,
there is a wide literature in which one can find exis-
tence results for problem (I)). When the second mem-
ber f belongs to W~''(Q), A. Bensoussan, L. Boc-
cardo and F. Murat [6] studied the problem and give
an existence result. While if f € L'(Q) the initiated
basic works were given by H. Brezis and Strauss [9], L.
Boccardo and T. Gallouét [7]] also proved an existence
result for , which was extended to the a unilateral
case studied by A. Benkirane and A. Elmahi [5]. When
g is not necessarily the null function, T. Del Vecchio
[10] proved first existence result for problem in
the case where g does not depend on the gradient and
then in V. M Monetti and L. Randazzo [16] using, in
both works, the rearrangement techniques.

Whoever in [II], Y. Akdim, E. Azroul and A. Benki-
rane treated the problem (I) within the framework
of Sobolev spaces with weight Wol’p(Q,a)), but while
keeping p constant.

E. Azroul, A. Barbara and H. Hjiej [2]] studied ,
in the nonclassical case by considering nonstandard
Sobolev spaces without weight WO1 Pe) (Q). See as well
[3] where existence and regularity of entropy solu-
tions was obtained for equation with degenerated
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second member.
Our objectif, in this paper, is to study equation
by adopting Sobolev spaces with weight v(x), and

to variable exponents p(x), Wol'p(x)(Q,v). We prove
that the problem admits at least a solution u €

PQ,).

2 Functional frame

Throughout this section, we suppose that the variable
exponent p(-) : Q — [1,+oo[ is log-Holder continuous
on (), that is there is a real constant ¢ > 0 such that
Vx,p € Q, x # y with |x — p| < 1/2 one has:

c

Ip(x)-p)| < m

and satisfying

p~<p(x)<p"<+eo

where
p :=essinfp(x); p*:=esssupp(x).
xeQ) xeQ
We define
C,(Q) = {hlog-Holder continous on Q, h(x) > 1}.

Definition 1 Let v be a function defined in Q; we call
v a weight function in Q) if it is measurable and strictly
positive a.e. in Q.

2.1 Lebesgue spaces with weight and to
variable exponents

Letpe C.(Q)and v bea weighted function in Q.

We define the Lebesgue space with weight and to vari-

able exponents LP¥)(Q),v), by
LPYQ,v) = {u Q -

v(0)|ulP¥dx < oo},

IR, measurable

equipped with the Luxemburg

Q
norm:

= inf{pt >0: j v(x)|£|”(x)dx < 1}
Q IS

”u”p(x)v

Proposition 1 The space (Lp(")(Q,v),||.||p(x)’v) is of Ba-
nach.

Proof:
Considering the operator

M 1

Y PO

1
Q) —PIQ)f =My (f)= v
ypx

It’s clear that M 1

)
Q), the _1_is a continuous biuniformly

vp(x)

is isomorphism from LPO(Q, v)

into LP\*
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application. Seeing that LP®¥)(Q)) is a Banach space,
then (Lp(x)(Q, V), ||.||p(x)’v) is of Banach.

v (x)[ulP)

Let’s note p, (1) =

Remark 1 In simple case v(x) = 1, we find again the
Lebesgue space with variable exponents LP¥)(Q); and

pu) = pu ) 5= plu) = [ [ulPd, (see [L243) and
Q
[17])

Lemma 1 For all function u € LPY)(Q, v). There are the
following assertions:

ipy(u)>1 (=1L<]) & “u“p(x)v
1), respectively.
(”) If”””p(x),v >1 then ”u”ZEX):V < pv(u) < ||u||£(x) v

Proof: ) :

Seeing that p,(u) = p(v?®u) and |[vP@ull,y) =
lullpx),», and using [17], we prove the lemma 2.1
above.

Let v be a weight function such that the following con-
dition:

>1 (= 1;<

p* p-
v <1 then [lulll ), <py(u) <lulll,)

1
e Lloc

(wl) velL! (Q); VT (Q).

loc

Proposition 2 Let Q) be a bounded open subset of IRN,
and v be a weightfunction on Q,
If (1) is verified then LP®¥)(Q),v) < L}

loc

(€Q).

Proof:
Let K be a included compact on Q. Using Holder
inequality we have
;1

1
J |ul|dx :J- [ty Py Pt dx
K K

1 -1

< 2llulv PO ey gy VPl

Lp (X)(K)’
fp/(x)
< 2l f YR
K

1
~1 /_
< 2||M||p(x),v(f yPO-Tdx + l)p )
K

Thanks to the assumption (wl) we deduce that

f Juldx < Cllally,0
K

dx+1)p,

2.2 Spaces of Sobolev with weight and to
variable exponents

Let pe C,(Q)and v be a weight function in Q.

We define the space of Sobolev w1th welght and to
variable exponents denoted W'P™)(Q,7), by

du

I8 cpx
ox; €

WhPE(Q,v) = {u e LPY(Q): Q,v),i

equipped with the norm
du
lull ey = il + Zn oo
i=1
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which is equivalent to the Luxemburg norm

N
. u ax
lulll = inf >0:J (|—|P<X>+ v(x E | 1|P )del .
H o\ x)

Proposition 3 Let v be a weight function in Q who
checks the condition (wI)

Then the space (W1 P, V), 1, px ) is of Banach.

Proof:
Let us consider (u,), a Cauchy sequence of

(Wl'p(x)(QrV)r”'Hl,p(x),v)-
Then (u ) and the
sequence (‘;x ) is also a Cauchy belong LPM(Q), v), i
1,..,N.

According the proposition 2.1,

+)n is a Cauchy sequence of LP(¥)(Q

there exists u €

LPX(Q) suchthat u, — u in LP®(Q), and
there exists v; € LPW(Q,v) such that ?9';” -

v; in LP(")(Q,V), i=1,..N.

Seeing that proposition 2.2, we have LPM(Q,v) c
L;,.(Q)and L} _(Q)c D (Q).
Thus, we obtain Vo € D(Q),

<Tvix Py = hmn—>oo<T'7un ’ (P>

_hmn—>oo<Tun ax >
d
_<Tu1 TZ:)/

=(T Uy .
( o ®)
Hence T,, = Ta: ,le v = g—;
Consequently
ue WhPN(Q,v),
and

u, — u in WHPE(Q,v),

We deduce then that W1P(¥)(Q),v) is a complete space.

e On another side, seeing that v satisfies the con-
dition (w1), we prove that C{°(Q) is included in
whplx
space

)(Q,v); that enables us to define the following

WOLP(X) (Q, V) — W”'”l,p(x),v’

who is closed in complete space, then it’s complete.

Proposition 4 (Characterization of the dual space
Wy, vy)

Let p(.) € C,(Q) and v a vector of weight who
satisfies the condition (wl). Then for all G €

(Wol’p(x)(Q, v))*, there exist a unique system of functions
(80- 815 &N) € LP DN Q)x(LP (), v17P W)W sych that
Vf e Wy Q)

N
= L f(x)go(x)dx + ;J-Q %gi(X)dx

www.astesj.com

Proof

The proof of this proposition is similar to that of [[14]]
(theorem3.16).

Besides the (w1l) assumption, we suppose that the
function weight satisfied

S )GLZIOC

(w2) v Q)

where s is a positive function to specify afterwards.
Let us introduce the function p; defined by

_ px)s(x)
pS(‘x) - S(X)+ 1 ’
we have
ps(x) < p(x) a.e. in Q.
and
pilx) = ﬁjf’éff% = NGH ()5,5( 7 if p(x)s(x) < N(s(x) +1
pi(x) arbitrary, elseif,

Proposition 5 Let p,s € C.(Q) and v a function weight
which satisfies (w1) and (w2). Then W'"P¥)(Q,v) —
W) (Q).

Proof
According to the Holder inequality, we have

J |V |p€ dX J- |V |ps p(x)

Lp)+m1)w<Ws Cy

1

X L

< CO(J- o ()P ) I(J- v(x)—5<X>dx)”

Q 1

1 72

< CO(J v (x)P®) v (x dx) j v(x)s(x)dx)
Q ; Q
7
< COCl(J [v(x)[P) dx) 1, according to (w2).
o)
If we take v = %, we will obtain then

1
PP« dx < Cocl(J |8_u|p(x)v(x)dx)71
i Q 9%

J' lau
Q axl

where
ps(x)
(B if PPy || > 1,
)/1 = : ps(x) ps(x)
ps(x)
()i )Py o || <1
’ ps)
consequently

L
71

Jdu
Ju V2 p(x)
” 0x; (x)”Ps(X) < COCI( J-Q | axi | V(x)dx)
v3

< CClIZE@IL .,
where
I 12 (0)llpy ) 2 1,
? ()" i GOl < 1,
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and
U A O
po i IOl < 1.
thus
du ou '
1=l < CoCull 5= n””,z:1gpr_ 2)
1

Seeing that
ps(x) <p(x) a.e. in Q.

then, there is a constant

C >0 such that ”uHLPs(X)(Q) < CHMHLP(X)(Q)I

we conclude then that

WPH(Q,v) < WhPs(Q).

Corollaire 1 Let p,s € C.(Q) and v a fuction weight
which satisfies (w1) and (w2). Then WLPH(Q,v) eses
L'¥(Q), for 1 < r(x) < p(x)

3 Basic assumption

Let QO be a bounded open subset of RN, N > 2, let
p(.) € CL(Q), and v a function weight in Q) such that:

vel] (Q)

vt el (Q)

and

—S\X N
v*@eLl (Q) where s(x)e]m,oo[ﬁ[

Let A Leray-Lions operator defined from Wol’p(x)(Q, v
to its dual WP ()(Q), v*) by

Au = —diva(x,u,Vu),

where a is a Carathéodory function satisfying the fol-
lowing assumptions:

p(x)
b(x)+|r|P @ +vr

1
(x) |C|P(X)*1

1
|a,-(x, 7, C)| < ﬁV pix)
(6)
(7)
(8)
with b(x) be a positive function in LP/(X)(Q), and a, f
are two strictly positive constants. On another side,
let g: QxR x RN — IR a Carathéodory function who

satisfied a.e. for x € Q and for all r € IR, { € IRN the
following conditions:

a(x,r,0)|(C-C)>0, YC=Ce RN

a(x,s,0)C > av|P™

[a(x,7,0) -

g(x,r,C)r > 0. (9)

www.astesj.com

,i=1,.,N.

1g0x, 7, Q) < d(Ir)(v()ITPY + ¢(x)),

with d : IR" — IR* a continuous, nondecreasing and
positive function; whereas c(x) be a positive function
in L1(Q).

Moreover, we suppose that g checks:

(10)

dp; > 0,3 p; > 0such that: (11)
for |S| 2 P1, |g(x;5: (E)l 2 pZV(x)I(EIP(X)
and
fell(Q). (12)

We have the following theorem

Theorem 1 Assume that (3) — holds, then the prob-
lem H admits at least one solution u € Wol’p(x)(Q,v)

Remark 2 If f € WL (x
ug(x,u, Vu) € L1(Q).

But if f € LYQ), we necessarily do not have
ug(x,u,Vu) € L1(Q).

Q,v*) then we have

Counter example:
Let us consider Q = {x € IR? : |x| < 1}, the ball open
unit of IR?, let A € [i, %[, we then have u(x) = In* (IXI) €

H}(Q) and —Au € L(Q), such that ~Au > 0,u|Vul? €
L'(Q) and |u|?|Vu|? does not belong to L!(Q) see [7].

Remark 3 The result of theorem (1| is not true when
g(x,7,C) =0, seeing that in the non-degenerate case with
p(x) = p constant, p < N, and when f € LY(Q), a solu-

tion of Au = f does not belong to Wol'p(Q

ﬂ W,y 1(Q), seef8].

Nip-1)
I<g<—F=

) but belongs to

Definition 2 Let X a Banach space. An operator A from
X to its dual X" is called as type (M) if for all sequence
(uy)y C X satisfying:

(i)
(if)
(iif)

then x = Au.

u, — u weakly in X
Au, — x weakly in X*
limsup, , (Au,, u,) <{(x,u),

Remark 4 The theorem 2.1 (p.171 [15)]) remains valid if
we replace A monotonous by: A of type (M).

4 Approximate problem

Let (f,), a sequence of regularly functions such that

fo— fin LY(Q) and |If]I < Ifll = Cy.
Let us consider the following approximate problem:

(Rn{ =

where g,(x,7,C) =

Auy, + gu(x,u,, Vuy,) in Q,

Uy € Wol’p(x)(Q: V),

g(x r,C)
1+1 g(x r,C)
acteristic function of Q,, where Q), is a sequence of

compact subsets which is increasing towards Q.

Xq,, with xq  is the char-

48


http://www.astesj.com

A. Abbassi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 5, 45-54 (2017)

We have g,(x,1,0)r > 0;|g,(x,7,C)| < |g(x,r,C)| and
Ign(x, 7, ) < n. /

Let us consider G, : Wol'p(x)((),v) — WLP (Q,v*) de-
fined by

(G, u,v) = J;) 2 (x,u, Vu)Vudx,u,v € Wol'p(x)(Q,v).

Proposition 6 The operator G,, is bounded.

Proof: .
Let u and v in Wo’p(x
inequality, we have:

)(Q,v), according to the Hélder

(G,u,v) :J g (x,u, Vu)Vvdx,
Q

f |g (%, u, Vu)|v(x ) Vvv( )P (l’dx

= 1
S(p_+ Mgy (x, u, Vi) v (x) € )||pr(x)||Vvv(x)F(")||p(x),
1
71
< C(L |g, (x, u, Vu)P (")v(x)*dx) ||V||W01'p<X>(Q V)
1
<C np,(")v(x) dx " vl
< 0 Wol’p(x)(Q,v)
1
’ 71
< P+ *
<Cn (Lv(x) dx) ¥l 2069
<Cllly o)
| |

Proposition 7 The operator A+ G,, : Wol’p(x)(Q,v) —
WLP ()(Q),v*) defined by Vu,v € Wol’p(x)(Q,v),

(A+G,)u,v) :J a(x,u,Vu)Vvdx+f 2 (x, 1, Vu)Vodx,
Q Q

is bounded, coercif, hemicontinous and of type (M).

Thanks to [15], the approximate problem admits at
least a solution.

Proof of the proposition|[7]

Using (6) and Holder inequality, we conclude that A
is bounded, by taking account of the proposition [6}
we will obtain that A + G,, is bounded. The coercivity
rise from (8) and from (9). It remains to be shown that
A+ G,, is hemicontinous, i.e. that:

Yu,v,we Wol'p(x)(Q,V),
(A+G,)(u+tv),w) — ((A+G,)(u+tgv), w), whent — tg.
seeing that for a.e. x € O, we have:

a;(x, u+tv,V(u+tv)) — a;(x,u+tqv, V(u+tgv)), t — tq,

then (6) combined to the lemma implies
that a;(x,u + tv,V(u + tv)) — a;(x,u + tev,V(u +

tov)), weakly in (LP ®)(Q,v*))N, when t — t,. Finally,
Ywe W, Lp(x (Q v),Vu,v,we W, Pl )(Q,v)

(A(u+tv),w) — (A(u + tov),w), when t — .

www.astesj.com

On another side g,(x,u + tv,V(u + tv)) — gu(x,u +
tov, V(u + tgv)), when t — g a.e. x € O, moreover

’ 1 7
J- | (o, u + tv, V(u + tv))|P gy < (E)P+|Q| < o0,
Q

while using, still the lemma we obtain:

L u+tv,V(u +tv)) — g,(x, u + tov, V(u + tgv))

weakly in LP,(")(Q), when t — t.
Seeing that w € LP ¥)(Q)), we will have:
(Gu(u +tv),w) — (G, (u + tgv),w), when t — t;.

Now, we will show that A + G,, satisfies the prop-
erty of type (M), a.e. that, for all sequence (u;); C

Wol’p(x)(Q, v) checking:

(i) uj—uin W, LPR(Q, v)
(ii) (A+Gy)u; — x weakly in W=7 ()(Q, v*)

(iii) limsup; ,((A+Gy)uj,u;—u) <0,
then x = (A+ G,)u.
Indeed:

—u)dx  <||g,(x, u];V”])” “”j -

J 8,1}, Vi) (1)
Q

c(f|gn oy, V)P ) =l oy
< CLLPH O =l

y — 0 when j — co.

lim (G uj,uj—u) =0.
]*)OO

consequently, according to (iii), we obtain

limsup(Au]-, uj— uy<0,

j—ooo
and seeing that A is pseudo-monotonous [11]], we de-
duce that

Auj — Au weakly in WP (Q,v")

and lim;_,(Auj,uj—u)=0.

On another side

0 =lim

]4)00

a(x,uj, Vu;)V(uj —u)dx
Q

= 1im(J (a(x, uj, Vuj) —a(x,uj, Vu) |V(u; —u)dx
Q

]4)00

+ a(x,

uj, Vu)V(uj —u)dx).
Q

Moreover we have a(x, u]-,Vu) —> a(x,u, Vu) strongly
in (LP ©(Q, v*))N, then

lim [ a(x,u;, Vu)V(u; —u)dx = 0.
J7JO
Thus
lim (a(x, uj, Vuj)—a(x,uj, Vu) |V(u; —u)dx = 0.
]7JQ
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USing || e ]elllIIla3 see b ow, we COnClude tllat = -r |f f } d:C,
nO

Vuj —> Vu a.e. in (3, when j — oo.
-, If " X (V)

Consequently ,
Let us pose ¢,,, = |f (x)|" ("))/*)(Q\E(no)(x). we have
gn(x,uj, Vuj) — g,(x,u,Vu) a.e. in O, when j — oco.

and

gl <IF G

Seeing that |g,(x,u;,Vu;)| < n € Lp/(x)(Q), then ac-

cording to the dominated convergence theorem of

{ Yy, —0 a.e.in Q,
Lebesgue, we obtain:

, according to the dominate convergence theorem, we
gn(x,uj, Vi) — g, (x,u, Vu) in L M(Q). will have

and seeing that v € L[PM(Q), then we have: Pr (x),y+ (fng (¥) = f (x)) > 0, when 1y — o,
J- gn(x, uj,Vuj)vdx—>J- gn(x,u,Vu)vdx when j—
Q Q

. that means what implies that F is dense in L ¥)(Q, ).

let us show, now, that
Guuj — Gyu in W~ Lp(x )(Q,v*) when j — co.
lim [ @(x)(g,(x)—g(x))dx=0, Yo eF.

Finally n—co )
1
AujtGyuj = AutGuu = x in W= ” 9(Q, v") when j — Seeing that ¢ = 0 on Q\ E,, , it is thus enough to prove
oo that
: lim | @(x)(ga(x) - g(x))dx = 0.
5 Technical lemmas = JE,

Lemma 2 Let y a function weight in Q, r(.) € C.(Q), Let us pose ¢, = (g, — g), we have
g € L'™MQ,y) and (g,), € L'™N(Q,y) such that )
gull-)y < C. { lp(ll(gn(x) — ()l <lp(x)| inE,,

If g, — g a.e. in Q then g, — g weakly in L"™)/(Q), ). ¢ 0 and O
n—0, a.e. in

Proof:

Let 119 > 1, let us pose According to the dominate convergence theorem, we

have

ol
E(ng) = {X €Q:|g,(x)—g(x)<1,¥n> ”0}~ ¢,— 0 ae.in L (Q),

what implies that
We have

lim | (x)(g(x) - g(x)dx =0, Yo F,

mes(E(ng)) — mes(Q), when ng — oo. n—co )

Let and by density of F in Lr,(")(Q,y*), we conclude that:

F=1¢ EL’/(")(Q,y*):(p =0 a.e.in Q\E(n )} ,
{ . " ° lim | ¢@(x)g,(x)dx = J. P(x)g(x)dx, Vo e L” 9(Q,»"),
Q

n—o0 Q
Let us show that Fis densein L" (x)(Q,y*) :
let f € L )(Q,y*), let us pose:

| f(x) if x€E(ng),
f"o(x)_{ 0 ifxEQ\(;f(”o)-

that means

g, — g weakly in L'™(Q, y).

|
We have
X Lemma 3 Assume that (3.1), (3.3), (3.5) hold, let (u,),
)7/*(f”0(x) J [fing (%) )/ dx a sequence in Wol'p(x)(Q,v) and u € Wol’p(x)(Q,v).
u, — u weakly in Wol’p(x)((),v),
=, Pt Cyas If
E(ng andf a(x, u,, Vuy,) —a(x, u,, Vu) |(Vu,, = Vu)dx — 0
| d g
* O\E(ny) f"U ~fll yds, then u, — u strongly in W, Pl (Q V).

www.astesj.com 50
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Proof:
Let us pose

D, =la(x,u,,Vu,)—a(x,u,, Vu) |(Vu,, — Vu),

according the (3.5), we have D, is a positive function.
We have also D,, — 0 in L' (Q).
Seeing that

u, — u weakly in Wol'p(x)(Q, V),
we have then

u, — u strongly in L1Y(Q, o),
and consequently

u, — u a.e. in Q.

Thanks to D, — 0 a.e. in Q,
there is then B C Q such that mes(B) = 0 and for
x € )\ B, we have

[u(x)] < oo, |Vuu(x)| < 00, u,(x) — u(x) and D,,(x) — 0.

Let us pose
571 = Vun(x)’ &= Vu(x)’
we have
Dy(x) Za Zwlw +a Zmé P

Za) Mk(x +GP |un|P
Zw
L L 4w
- Zwi’"’” [k(x) + 07 & |7
+Zw
>aZwIE P
o
i=1
(13)

where C(x) is a function depending on x and not on 7.
seeing that u,(x) — u(x), we have |u,(x)| < M,, where
M, is positive. Then by a standard argument, we will
have |£,| is uniformly bounded compared to #; indeed:
(4.4) becomes

enP e

“igd,

[1+Za)

7Pt

g

IénI]

1
7

Zw e Cw  Cwel "
o YT Njgip® <]

C(X)a)lp(x)
|Eplpt-1 e
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If |&,] — oo, there is at least iy such that|&,’| — co, what
will give us D,,(x) — oo; what is absurd.

Let £&* an adherent point of &,,, we have |£*| < co and
by continuity of the operator a compared to two last
variables, we will have:

alx,u, &) —alx,u,&)|(E"-&) =

and according to (3.2), we obtain £* = &.

the unicity of the adherent point implies Vu,(x) —
Vu(x) a.e. in Q.

Seeing that the sequence (a(x, u,, Vu,)), is bounded in
(LP(Q,v)N, and a(x,u,, Vu,) — a(x,u,Vu) a.e. in
Q, then according the lemma [2] we obtain

a(x, uy,, Vu,) — a(x, u, Vu) weakly in (Lp (Q v))

let us pose v, = a(x, u,, Vu,)Vu, and v = a(x, u, Vu)Vu,

in the same way that in [4], we can write

U = a(x, 1, Vu,)Vu, — 7= a(x,u, Vu)Vu strongly in L'(Q).
According to (3.3), we have

N
du,
p(x) < 7~
“;”'axi' <9

let

Z, = Zvl

Thanks to Fatou lemma, we obtain

f 2ydx§liminff Y+, — |z, —zldx,
Q —e Ja

n

8”11;; _ p(x _}/n _
P, 2= lea—l =t =

2 I

ie
0< —limsupf |z, — z|dx,
Q

n—o0
then
0< liminfj |z, —z|ldx < limsup—r |z,, — z|dx < 0,
what implies
Vu, — Vuin (LPY(Q,v)N,
consequently
U, — uin Wy’ Pl (Q V).

Definition 3 for any k >0 and s € IR, the truncature

function Ty(.) is defined as:
s if i<k
Ti(s) = klz—| if ls|> k.

Lemma 4 Let (u,), a sequence from Wl’p(x)(Q,v) such
that u, — u weakly in W, Lp(x (Q v). Then Ti(u,) —
Ty (1) weakly in Wy P )(Q,v).
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Proof .

We have u, — u weakly in Wo’p(x)(Q,v), and
Wol’p(x)(Q,v) s [PO(Q), we will have u, — u
strongly in LP¥)(Q) and a.e.
T (u,) = T (u,) a.e. in Q.

On another side

in Q), consequently

7]
I,y < [ VL,
sf VT, (1) IV 10, P v (),
< | Vi, P¥v(x)dx,
Q

0
<l

where
91 — p+ 1f ”Tk(un)”p(x),v <1,
p- if ”Tk(un)”p(x),v >1,
and _
0, = p+ S1 ”un”p(x),v 21,
! p- si ”un“p(x),v <1
Thus (T, (u,)), is bounded in Wol’p(x)(Q,v), conse-
quently Ty (u,) = Ti(u) weakly in Wol’p(x)(Q,v). [ |

6 Proof of theorem

Stepl: a priori estimate

The problem (P,) admits at least a solution
u, belonging to Wol’p(x)(Q, v).  Choosing  Ty(u,)
as test function in (P,), and seeing that

J- gn(x, 1y, Vu, ) Ty (u,)dx > 0, we obtain:
Q

J;) a(xr uniVTk(un))VTk(un>dx < J;) fnTk(”n)dx-
Using (5), we deduce that
aJ- V(X)|VT(1,)PPdx < kCy,
Q
that means
), < K
V(x)IVTi (u,) P dx < —Cy.
Q 04

Consequently

“VTk(l/ln) v < CZ;

vV
”p(X)»
where

y= p+ lf ”VTk(un)”p(x),v >1,
p- if ”VTk(un)”p(x),V <l

Onthe other hand, we have

f a(0, s, VT 16)) VT (10, )d x
Q

+J gn(xl ty, V) Ty (1, )dx :J fnTk(un)dx-
Q Q
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What implies

J gn(xr ty, Vi) Tie(u,)dx SJ |fn|kdx
Q Q

Thus
u?l
J k_gn(xr unfvun)dx
luglok) 1l
+f gn(‘x’ unrvun)undx S f |f1’l|kdx'
{lu <k} Q

Consequently

kj G (x, 1y, Vu, )dx < kCy
{luy >k}
However

Jv(x)qunlp(x)dx :J v(x)| Vi, P¥ dx
Q {luy|>k)

+J V()| Vi, [PX) dx.
Q
Then for k > p;, we will have:

1
f V()| Vi, PP dx < —
Q

G (x, 1y, Vu, )dx+Cy < Cy
P2 Jju,l>k)

What implies that a sequence (u,), is bounded in
1,
WP, v).
Step2: Strong convergence of truncations
Seeing that (u,,), is bounded in Wol’p(x)(Q,v), and
Wol’p(x)(Q,v) e [PW)(Q), we can extract a subse-
quence of (uy),, still noted (u,),, and there is u €
Wol’p(x)(Q, v) such that

. 1,
u, —u in W, p(x)(Q,v),
u, —>u a.e.in Q,

We want to show that T(u,) — Ti(u) strongly in
Wy P, v).

Let z, = Ty(u,) — Tx(u), let us pose v, =
As?

(pz\(zrl)f
where @,(s) = se
Choosing v,, as test function in (P,).

We are (v,),, is bounded in Wol’p(x)(Q,v), and v, —> 0
a.e. in (), then according to lemma we obtain

v, — 0 weakly in Wol'p(x)(Q,v),.
thus (f,,v,) — 0, because v, — 0 weakly in L*(Q),
and f, — f strongly in L}(Q).
Consequently
Min = (A, vy) +{Gptty, vy) — 0.

Seeing that g,(x, u,, Vu,) > 0 on {x € Q : |u,| > k}, then
we have:

(Au,,v,)+ J (%, uy, Vuy)v,dx <1y,
{xeQ:lu,|<k}
Thus

<Aunfvn>_|J gn(x, Uy, Vi, )v,dx| < Nin- (14)
{xeQ:|u,|<k}
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however

(Auy,vy,) = J a(x, u,, Vu,
0

= f a(%, Ti(t), VT (14))V (Te() = Te (1)) p  (2)dx

Jo

T (1))@ (2,)dx + 12,
where

Mon =

a(x, uy,, Vun)VTk(u)qoi\(zn)dx
[14,, 1>k

(15)
a(x, T (), Vi () —a(x, Tk(un),VTk(u))]V(Tk(un)

5 a(%, Te (1), VT (w))V(Te (1)~ Tic (1)) ) (2, ) x—

a(x, u,, Vun)VTk(u)qoi\(zn)dx.
|1 |>k

We have

{

= 13y, — Owhen n — co.
On another side

VTi(1) X {ju, >k — O strongly in (LPX)(Q,v))N,
(a(x,1,,V1,)), is bounded in (LP ®)(Q,v*))N,

| (%, 1y, Vi, )v,dx|
{lunl<k}

<

|gn(xl ty, Vi, )l|vy,ldx
{lunl<k}

sj A(K)(c(x) + v(x) |Vt POl |dx
{Junl<k}
<d(k) () (zn)ldx (16)
{lu|<k}
()
+ a(x: unrvun)vunl(P/\(andx

{lun|<k}

< 1jpn + 400 fQ (6, T (1), VT (1) V T (1) o (2l x

< @J\ (a(x, Tk(un)lVTk(un)) —a(x, Tk(un)fVTk(un)))
Q

X [VTk(”rz) —VTk(M)]|§0,\(Zn)|dx+ Mans

where

H3n = d(k)f c(x)|lpa(z,)ldx — 0 whenn — oo,
{luyl<k)

and 74y,

= f a(x, Ti(11,), VT (1)) VT ()02 (2l x
Q

(k)

+a

f a(x, Tie(u), VTie(1))(V T (1) =V Ti ()| @ (2| d x

Q
+13, — 0 whenn — oo,

If A > (@)2 then, by a simple calculation, we have

’

(P,\(S)

By combining this last inequality with (14), and
(16), we obtain

fQ (a(x, Te(1t,), V(1) — alx, Tk(unwn(un)))

d(k)

1
-— > —.
o 2

lpa(s)]
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X VTk(un) — VTk(u)

W(Ti(t4y) = T (1)) (z0)dx < 2115 = 20 + 1an),— 0; When n — co.

Thanks to lemma |3} we deduce that

Ti(u,,) — Ty (u) strongly in Wol’p(x)((),v). (17)

step3: Equi-integrability of the nonlinearitie

(8 (x, 4, Vity )
_We will show that g,(x, u,, Vu,) — g(x,u,Vu) strongly
in Ll(Q). Seeing , we deduce that

Vu, — Vu a.e. in Q, when n — oo. (18)

Let E a measurable part of 2, and let m > 0, let us
pose

Xn={xeQ:|u,|<m}et (X)) ={xeQ:|u,|l>m).

We have

f|gn<x,un,wn>|dx f 1905ty Vit )l dx
E ENX,

+ |0 (%, 1y, Vuy)|d x,
EN(X}:)¢

< d"”’L

+c(x))dx +J-
(X

m)

(V(X)IV T, (10, P>

|gn(x; un) Vun)|dx.

(19)
Thanks to and seeing c(x) € L' (Q), there is 6 > 0
such that for all E: |E| < 0, then
<

(20)

d(m)L<v<x>|VTm<un>|P<x>+c<x>)dx 1

Let 1, a function defined by:

0 iflsl<m-1,
1 ifs>m,
Y (x) = 1 ifs<-m,
Yu(x)=1  ifm-1<s|<m,

we have ¢,,(u,) € Wol’p(x)(Q,v), choosing ,,(u,) as
test function in (P,), we obtain:

La(x,un,Vun>Vun¢;1<un)dx+L 501 Vit o 11)

= L fnl/)m(un)dX
According (9) and (10), we deduce that

f 9%, 6y, Vit ldx < j fldx.
{|un|>m_1} {|un|>m_1}

what implies

Llu,zl>m}

however f, — f in L'(Q) and |{|u,,| > m — 1}| — 0 when
m — oo, uniformly in #n, then for m big enough we
have;

190 (s 11, Vit < f Ifldx.

{|“n|>m_1}

J |fuldx < ﬂ, Vne IN.
{lunl>m—1} 2
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Thus

J |g (%, 1y, Vi, )|dx < ﬂ, Vne IN. (21)
flty>m) 2

Combining (19), and (21), we deduce that
J g (x, 1, Vi, )ldx <, for alln € IN.
E

That means that the sequence (g,(x, 1, Vu,)), is equi-
integrable, but g,(x, u,, Vu,) - g(x,u,Vu) a.e. in Q,
then thanks to Vitali theorem, we deduce that

n(x, 1, Vuy,) — g(x,u, Vu) strongly in LY(Q).

step4: passing to the limit

Seeing that (u,), is bounded in Wol'p(x)(Q,v), and
thanks to (6), we conclude that (a(x,u,, Vi,)),
is bounded in (LP (")(Q,v*))N, and seeing that
a(x, u,, Vu,) — a(x,u,Vu) a.e. in Q, then according to
the lemma|[2] we obtain that

a(x, u,, Vuy,) — a(x, u, Vu) weakly in (Lp/(x)(Q, v*))N,

while making n — oo, we obtain Yv € Wol’p(x)(Q,v) N
L*(Q),

(Au,v)+ j@ g(x,u, Vu)vdx = JQ fvdx.

7 Example of application

Let Q) be a bounded open subset of RN, N > 2, and
let p(x),q(x) € C,(Q).
Let us pose:

a;(x,1,0) = v(x)|C; PP tsgn(Cy), i=1,...
and

g(x,1,0) = prirl™v(x)lcP, p > 0,

were v(x) a function weight in Q. The function a;,
i = 1,..,N, which satisfies the assumptions of theo-
rem (6), and (8); and well as the function g satis-
fies (9), and (11)), with |s| > p; =1 and p, = p >0,
consequently the assumptions of theorem [1|are satis-
fied; thus for f € LY(Q), the following theorem, with
v(x) = d*(x):

N
O {42 ) 24 -1 gy 2
D (i 5

+pulul?™ T Zd (x| geP™) = f inD'(Q),
ue WyPY(Q,d*(x)) and

pululf?® LN, Zd*(x)| gL P e L1(Q),

!Nl

admits at least one solution u € Wol’p(x)(Q,d’\(x)).
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