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In this paper, we prove the existence of a solution of the strongly
nonlinear degenerate p(x)-elliptic equation of type:

(P )
{
−div a(x,u,∇u) + g(x,u,∇u) = f in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open subset of IRN , N ≥ 2, a is a Carathéodory
function from Ω× IR× IRN into IRN , who satisfies assumptions of
growth, ellipticity and strict monotonicity. The nonlinear term g:
Ω× IR× IRN −→ IR checks assumptions of growth, sign condition and
coercivity condition, while the right hand side f belongs to L1(Ω) .
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1 Introduction

Let Ω be a bounded open subset of IRN , N ≥ 2, let ∂Ω
its boundary and p(x) ∈ C(Ω) with p(x) > 1.
Let ν be a weight function in Ω, ie: ν measurable and
strictly positive a.e. in Ω. We suppose furthermore,
that the weight function satisfies also the integrability
conditions defined in section 2.
Let us consider the following degenerate p(x)-elliptic
problem with boundary condition

(P )
{
Au + g(x,u,∇u) = f in Ω,

u = 0 on ∂Ω,

where A is a Leray-Lions operator defined from

W
1,p(x)
0 (Ω,ν) to its dual W −1,p′(x)(Ω,ν∗) , with ν∗ =

ν1−p′ (x), by :

Au = −div a(x,u,∇u) .

where a is a Carathéodory function from Ω × IR ×
IRN −→ IRN who satisfies assumptions of growth, el-
lipticity and strict monotonicity, while the nonlinear
term g: Ω× IR× IRN −→ IR checks assumptions of sign
and growth. We suppose moreover that g checks the
following condition of coercivity:{

∃ ρ1 > 0,∃ ρ2 > 0 such that :
for |s| ≥ ρ1, |g(x,s,ξ)| ≥ ρ2ν(x)|ξ |p(x)

We suppose also that the second member f be-
longs to L1(Ω) .

Let consider the following degenerate p(x)-elliptic
problem of Dirichlet:{

Au + g(x,u,∇u) = f in D′ (Ω),

u ∈ W 1,p(x)
0 (Ω,ν), g(x,u,∇u) ∈ L1(Ω).

(1)

In the case where p is constant and without weight,
there is a wide literature in which one can find exis-
tence results for problem (1) . When the second mem-
ber f belongs to W −1,p′ (Ω), A. Bensoussan, L. Boc-
cardo and F. Murat [6] studied the problem and give
an existence result. While if f ∈ L1(Ω) the initiated
basic works were given by H. Brezis and Strauss [9], L.
Boccardo and T. Gallouët [7] also proved an existence
result for (1) , which was extended to the a unilateral
case studied by A. Benkirane and A. Elmahi [5]. When
g is not necessarily the null function, T. Del Vecchio
[10] proved first existence result for problem (1) in
the case where g does not depend on the gradient and
then in V. M Monetti and L. Randazzo [16] using, in
both works, the rearrangement techniques.
Whoever in [1], Y. Akdim, E. Azroul and A. Benki-
rane treated the problem (1) within the framework
of Sobolev spaces with weight W 1,p

0 (Ω,ω), but while
keeping p constant.
E. Azroul, A. Barbara and H. Hjiej [2] studied (1) ,
in the nonclassical case by considering nonstandard

Sobolev spaces without weight W 1,p(x)
0 (Ω). See as well

[3] where existence and regularity of entropy solu-
tions was obtained for equation (1) with degenerated
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second member.
Our objectif, in this paper, is to study equation (1)
by adopting Sobolev spaces with weight ν(x), and

to variable exponents p(x), W
1,p(x)
0 (Ω,ν). We prove

that the problem (1) admits at least a solution u ∈
W

1,p(x)
0 (Ω,ν).

2 Functional frame

Throughout this section, we suppose that the variable
exponent p(·) : Ω→ [1,+∞[ is log-Hölder continuous
on Ω, that is there is a real constant c > 0 such that
∀x,y ∈Ω, x , y with |x − y| < 1/2 one has:

|p(x)− p(y)| ≤ c
−log |x − y|

and satisfying

p− ≤ p(x) ≤ p+ < +∞

where

p− := ess inf
x∈Ω

p(x); p+ := esssup
x∈Ω

p(x).

We define

C+(Ω) = {h log-Hölder continous on Ω,h(x) > 1}.

Definition 1 Let ν be a function defined in Ω; we call
ν a weight function in Ω if it is measurable and strictly
positive a.e. in Ω.

2.1 Lebesgue spaces with weight and to
variable exponents

Let p ∈ C+(Ω) and ν be a weighted function in Ω.
We define the Lebesgue space with weight and to vari-
able exponents Lp(x)(Ω,ν), by
Lp(x)(Ω,ν) = {u : Ω → IR, measurable :∫
Ω

ν(x)|u|p(x)dx < ∞}, equipped with the Luxemburg

norm:

‖u‖p(x),ν = inf
{
µ > 0 :

∫
Ω

ν(x)|u
µ
|p(x)dx ≤ 1

}

Proposition 1 The space
(
Lp(x)(Ω,ν),‖.‖p(x),ν

)
is of Ba-

nach.

Proof:
Considering the operator

M
ν

1
p(x)

: Lp(x)(Ω,ν) −→ Lp(x)(Ω), f →M
ν

1
p(x)

(f ) = f ν
1
p(x)

It’s clear that M
ν

1
p(x)

is isomorphism from Lp(x)(Ω,ν)

into Lp(x)(Ω), then M
ν

1
p(x)

is a continuous biuniformly

application. Seeing that Lp(x)(Ω) is a Banach space,

then
(
Lp(x)(Ω,ν),‖.‖p(x),ν

)
is of Banach.

Let’s note ρν(u) =
∫
Ω

ν(x)|u|p(x)dx.

Remark 1 In simple case ν(x) = 1, we find again the
Lebesgue space with variable exponents Lp(x)(Ω); and

ρν(u) = ρ1(u) := ρ(u) =
∫
Ω

|u|p(x)dx, (see [12],[13] and

[17])

Lemma 1 For all function u ∈ Lp(x)(Ω,ν). There are the
following assertions:
(i) ρν(u) > 1 (= 1;< 1) ⇔ ‖u‖p(x),ν > 1 (= 1;<
1), respectively.

(ii) If ‖u‖p(x),ν > 1 then ‖u‖p−p(x),ν ≤ ρν(u) ≤ ‖u‖p
+

p(x),ν .

(iii) If ‖u‖p(x),ν < 1 then ‖u‖p
+

p(x),ν ≤ ρν(u) ≤ ‖u‖p−p(x),ν .

Proof:
Seeing that ρν(u) = ρ(ν

1
p(x)u) and ‖ν

1
p(x)u‖p(x) =

‖u‖p(x),ν , and using [17], we prove the lemma 2.1
above.
Let ν be a weight function such that the following con-
dition:

(w1) ν ∈ L1
loc(Ω); ν

−1
p(x)−1 ∈ L1

loc(Ω).

Proposition 2 Let Ω be a bounded open subset of IRN ,
and ν be a weight function on Ω,
If (w1) is verified then Lp(x)(Ω,ν) ↪→ L1

loc(Ω).

Proof:
Let K be a included compact on Ω. Using Hölder

inequality we have∫
K
|u|dx =

∫
K
|u|ν

1
p(x) ν

−1
p(x) dx

≤ 2‖|u|ν
1
p(x) ‖Lp(x)(K)‖ν

−1
p(x) ‖

Lp
′ (x)(K)

,

≤ 2‖u‖p(x),ν

(∫
K
ν
−p
′
(x)

p(x) dx+ 1
) 1
p
′
−
,

≤ 2‖u‖p(x),ν

(∫
K
ν

−1
p(x)−1 dx+ 1

) 1
p
′
−
.

Thanks to the assumption (w1) we deduce that∫
K
|u|dx ≤ C‖u‖p(x),ν .

2.2 Spaces of Sobolev with weight and to
variable exponents

Let p ∈ C+(Ω) and ν be a weight function in Ω.
We define the space of Sobolev with weight and to
variable exponents denoted W 1,p(x)(Ω, −→ν ), by

W 1,p(x)(Ω,ν) =
{
u ∈ Lp(x)(Ω) :

∂u
∂xi
∈ Lp(x)(Ω,ν), i = 1, ...,N

}
,

equipped with the norm

‖u‖1,p(x),ν = ‖u‖p(x) +
N∑
i=1

‖ ∂u
∂xi
‖p(x),ν

www.astesj.com 46
https://dx.doi.org/10.25046/aj020509

http://www.astesj.com


A. Abbassi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 5, 45-54 (2017)

which is equivalent to the Luxemburg norm

|||u||| = inf

µ > 0 :
∫
Ω

(
|u
µ
|p(x)+ν(x)

N∑
i=1

|
∂u
∂xi

µ
|p(x)

)
dx ≤ 1

.
Proposition 3 Let ν be a weight function in Ω who
checks the condition (w1).
Then the space

(
W 1,p(x)(Ω,ν),‖.‖1,p(x),ν

)
is of Banach.

Proof:
Let us consider (un)n a Cauchy sequence of(

W 1,p(x)(Ω,ν),‖.‖1,p(x),ν

)
.

Then (un)n is a Cauchy sequence of Lp(x)(Ω) and the
sequence (∂un∂xi

)n is also a Cauchy belong Lp(x)(Ω,ν), i =
1, ...,N .
According the proposition 2.1, there exists u ∈
Lp(x)(Ω) such that un → u in Lp(x)(Ω), and
there exists vi ∈ Lp(x)(Ω,ν) such that ∂un

∂xi
→

vi in Lp(x)(Ω,ν), i = 1, ...,N .
Seeing that proposition 2.2, we have Lp(x)(Ω,ν) ⊂
L1
loc(Ω) and L1

loc(Ω) ⊂D ′ (Ω).
Thus, we obtain ∀ϕ ∈D(Ω),

〈Tvi ,ϕ〉 = limn→∞〈T ∂un
∂xi

,ϕ〉,

= − limn→∞〈Tun ,
∂ϕ
∂xi
〉,

= −〈Tu ,
∂ϕ
∂xi
〉,

= 〈T ∂u
∂xi

,ϕ〉.

Hence Tvi = T ∂u
∂xi

, i.e. vi = ∂u
∂xi
.

Consequently
u ∈W 1,p(x)(Ω,ν),

and
un→ u in W 1,p(x)(Ω,ν),

We deduce then thatW 1,p(x)(Ω,ν) is a complete space.
• On another side, seeing that ν satisfies the con-

dition (w1), we prove that C∞0 (Ω) is included in
W 1,p(x)(Ω,ν); that enables us to define the following
space

W
1,p(x)
0 (Ω,ν) = C∞0 (Ω)

‖.‖1,p(x),ν ,

who is closed in complete space, then it’s complete.

Proposition 4 (Characterization of the dual space
(W 1,p(x)

0 (Ω,ν))∗)
Let p(.) ∈ C+(Ω) and ν a vector of weight who
satisfies the condition (w1). Then for all G ∈
(W 1,p(x)

0 (Ω,ν))∗, there exist a unique system of functions

(g0, g1, ..., gN ) ∈ Lp
′
(x)(Ω)×(Lp

′
(x)(Ω,ν1−p′ (x)))N such that

∀f ∈W 1,p(x)
0 (Ω,ν) :

G(f ) =
∫
Ω

f (x)g0(x)dx+
N∑
i=1

∫
Ω

∂f

∂xi
gi(x)dx.

Proof
The proof of this proposition is similar to that of [14]
(theorem3.16).
Besides the (w1) assumption, we suppose that the
function weight satisfied

(w2) ν−s(x) ∈ L1
loc(Ω)

where s is a positive function to specify afterwards.
Let us introduce the function ps defined by

ps(x) =
p(x)s(x)
s(x) + 1

,

we have
ps(x) < p(x) a.e. in Ω.

and p∗s(x) = Nps(x)
N−ps(x) = Np(x)s(x)

N (s(x)+1)−p(x)s(x) if p(x)s(x) < N (s(x) + 1),
p∗s(x) arbitrary, else if,

Proposition 5 Let p,s ∈ C+(Ω) and ν a function weight
which satisfies (w1) and (w2). Then W 1,p(x)(Ω,ν) ↪→
W 1,ps(x)(Ω).

Proof
According to the Hölder inequality, we have∫

Ω

|v(x)|ps(x)dx =
∫
Ω

|v(x)|ps(x)ν
ps (x)
p(x) ν

−ps (x)
p(x) dx

≤
(

1
( pps )−

+ 1
(s+1)−

)
‖|v(x)|ps(x)ν

ps (x)
p(x) ‖ p(x)

ps (x)
‖ν
−ps (x)
p(x) ‖s(x)+1

≤ C0

(∫
Ω

|v(x)|p(x)ν(x)dx
) 1
γ1

(∫
Ω

ν(x)−s(x)dx

) 1
γ2

≤ C0

(∫
Ω

|v(x)|p(x)ν(x)dx
) 1
γ1

(∫
Ω

ν(x)−s(x)dx

) 1
γ2

≤ C0C1

(∫
Ω

|v(x)|p(x)ν(x)dx
) 1
γ1
, according to (w2).

If we take v = ∂u
∂xi

, we will obtain then

∫
Ω

| ∂u
∂xi
|ps(x)dx ≤ C0C1

(∫
Ω

| ∂u
∂xi
|p(x)ν(x)dx

) 1
γ1

where

γ1 =


( pps )− if ‖|v(x)|ps(x)ν

ps (x)
p(x) ‖ p(x)

ps (x)
≥ 1,

( pps )
+ if ‖|v(x)|ps(x)ν

ps (x)
p(x) ‖ p(x)

ps (x)
< 1,

consequently

‖ ∂u∂xi (x)‖γ2
ps(x) ≤ C0C1

(∫
Ω

| ∂u
∂xi
|p(x)ν(x)dx

) 1
γ1

≤ C0C1‖ ∂u∂xi (x)‖
γ3
γ1
p(x),ν

where

γ2 =

 (ps)− if ‖ ∂u∂xi (x)‖ps(x) ≥ 1,

(ps)+ if ‖ ∂u∂xi (x)‖ps(x) < 1,
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and

γ3 =

 p+ if ‖ ∂u∂xi (x)‖p(x),ν ≥ 1,

p− if ‖ ∂u∂xi (x)‖p(x),ν < 1.

thus

‖ ∂u
∂xi
‖ps(x) ≤ C0C1‖

∂u
∂xi
‖

γ3
γ1γ2
p(x),ν , i = 1,2, ...,N . (2)

Seeing that
ps(x) < p(x) a.e. in Ω.

then, there is a constant

C > 0 such that ‖u‖Lps (x)(Ω) ≤ C‖u‖Lp(x)(Ω),

we conclude then that

W 1,p(x)(Ω,ν) ↪→W 1,ps(x)(Ω).

Corollaire 1 Let p,s ∈ C+(Ω) and ν a fuction weight
which satisfies (w1) and (w2). Then W 1,p(x)(Ω,ν) ↪→↪→
Lr(x)(Ω), for 1 ≤ r(x) < p∗s(x)

3 Basic assumption

Let Ω be a bounded open subset of IRN , N ≥ 2, let
p(.) ∈ C+(Ω), and ν a function weight in Ω such that:

ν ∈ L1
loc(Ω) (3)

ν
−1

p(x)−1 ∈ L1
loc(Ω) (4)

and

ν−s(x) ∈ L1
loc(Ω) where s(x) ∈

]
N
p(x)

,∞
[
∩

[
1

p(x)− 1
,∞

[
(5)

Let A Leray-Lions operator defined from W
1,p(x)
0 (Ω,ν)

to its dual W −1,p
′
(x)(Ω,ν∗) by

Au = −div a(x,u,∇u),

where a is a Carathéodory function satisfying the fol-
lowing assumptions:

|ai(x,r,ζ)| ≤ βν
1
p(x)

[
b(x)+|r |

p(x)

p
′ (x) +ν

1
p
′ (x) |ζ|p(x)−1

]
, i = 1, ..,N .

(6)
[a(x,r,ζ)− a(x,r,ζ)](ζ − ζ) > 0, ∀ ζ , ζ ∈ IRN . (7)

a(x,s,ζ)ζ ≥ αν|ζ|p(x). (8)

with b(x) be a positive function in Lp
′
(x)(Ω), and α, β

are two strictly positive constants. On another side,
let g: Ω× IR× IRN −→ IR a Carathéodory function who
satisfied a.e. for x ∈ Ω and for all r ∈ IR, ζ ∈ IRN the
following conditions:

g(x,r,ζ)r ≥ 0. (9)

|g(x,r,ζ)| ≤ d(|r |)(ν(x)|ζ|p(x) + c(x)). (10)

with d : IR+ −→ IR+ a continuous, nondecreasing and
positive function; whereas c(x) be a positive function
in L1(Ω).
Moreover, we suppose that g checks:{

∃ ρ1 > 0,∃ ρ2 > 0 such that :
for |s| ≥ ρ1, |g(x,s,ξ)| ≥ ρ2ν(x)|ξ |p(x) (11)

and
f ∈ L1(Ω). (12)

We have the following theorem

Theorem 1 Assume that (3)− (12) holds, then the prob-
lem (1) admits at least one solution u ∈W 1,p(x)

0 (Ω,ν)

Remark 2 If f ∈ W −1,p
′
(x)(Ω,ν∗) then we have

ug(x,u,∇u) ∈ L1(Ω).
But if f ∈ L1(Ω), we necessarily do not have
ug(x,u,∇u) ∈ L1(Ω).

Counter example:
Let us consider Ω = {x ∈ IR2 : |x| < 1}, the ball open
unit of IR2, let λ ∈ [ 1

4 ,
1
3 [, we then have u(x) = lnλ( 1

|x| ) ∈
H1

0 (Ω) and −∆u ∈ L1(Ω), such that −∆u ≥ 0,u|∇u|2 ∈
L1(Ω) and |u|2|∇u|2 does not belong to L1(Ω) see [7].

Remark 3 The result of theorem 1 is not true when
g(x,r,ζ) = 0, seeing that in the non-degenerate case with
p(x) = p constant, p ≤ N, and when f ∈ L1(Ω), a solu-
tion of Au = f does not belong to W 1,p

0 (Ω) but belongs to⋂
1<q<N (p−1)

N−1

W
1,q
0 (Ω), see[8].

Definition 2 Let X a Banach space. An operator A from
X to its dual X∗ is called as type (M) if for all sequence
(un)n ⊂ X satisfying:

(i) un⇀u weakly in X
(ii) Aun⇀χ weakly in X∗

(iii) limsupn→∞〈Aun,un〉 ≤ 〈χ,u〉,

then χ = Au.

Remark 4 The theorem 2.1 (p.171 [15]) remains valid if
we replace A monotonous by: A of type (M).

4 Approximate problem

Let (fn)n a sequence of regularly functions such that
fn→ f in L1(Ω) and ‖fn‖ ≤ ‖f ‖ = C1.
Let us consider the following approximate problem:

(Pn)
{

Aun + gn(x,un,∇un) = fn in Ω,

un ∈W
1,p(x)
0 (Ω,ν),

where gn(x,r,ζ) = g(x,r,ζ)
1+ 1

n g(x,r,ζ)
χΩn

, with χΩn
is the char-

acteristic function of Ωn where Ωn is a sequence of
compact subsets which is increasing towards Ω.
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We have gn(x,r,ζ)r ≥ 0; |gn(x,r,ζ)| ≤ |g(x,r,ζ)| and
|gn(x,r,ζ)| ≤ n.
Let us consider Gn :W 1,p(x)

0 (Ω,ν) −→W −1,p
′
(Ω,ν∗) de-

fined by

〈Gnu,v〉 =
∫
Ω

gn(x,u,∇u)∇vdx,u,v ∈W 1,p(x)
0 (Ω,ν).

Proposition 6 The operator Gn is bounded.

Proof:
Let u and v in W 1,p(x)

0 (Ω,ν), according to the Hölder
inequality, we have:

〈Gnu,v〉 =
∫
Ω

gn(x,u,∇u)∇vdx,

≤
∫
Ω

|gn(x,u,∇u)|ν(x)
−1
p(x)∇vν(x)

1
p(x) dx

≤ ( 1
p−

+ 1
p′−

)‖|gn(x,u,∇u)|ν(x)
−1
p(x) ‖p′ (x)‖∇vν(x)

1
p(x) ‖p(x),

≤ C
(∫

Ω

|gn(x,u,∇u)|p
′
(x)ν(x)∗dx

) 1
γ1
‖v‖

W
1,p(x)
0 (Ω,ν)

≤ C
(∫

Ω

np
′
(x)ν(x)∗dx

) 1
γ1
‖v‖

W
1,p(x)
0 (Ω,ν)

≤ Cnp
′
+

(∫
Ω

ν(x)∗dx
) 1
γ1
‖v‖

W
1,p(x)
0 (Ω,ν)

≤ C ′‖v‖
W

1,p(x)
0 (Ω,ν)

Proposition 7 The operator A +Gn : W 1,p(x)
0 (Ω,ν) −→

W −1,p
′
(x)(Ω,ν∗) defined by ∀u,v ∈W 1,p(x)

0 (Ω,ν),

〈(A+Gn)u,v〉 =
∫
Ω

a(x,u,∇u)∇vdx+
∫
Ω

gn(x,u,∇u)∇vdx,

is bounded, coercif, hemicontinous and of type (M).

Thanks to [15], the approximate problem admits at
least a solution.
Proof of the proposition 7
Using (6) and Hölder inequality, we conclude that A
is bounded, by taking account of the proposition 6,
we will obtain that A+Gn is bounded. The coercivity
rise from (8) and from (9). It remains to be shown that
A+Gn is hemicontinous, i.e. that:

∀u,v,w ∈W 1,p(x)
0 (Ω,ν),

〈(A+Gn)(u+tv),w〉 −→ 〈(A+Gn)(u+t0v),w〉,whent→ t0.

seeing that for a.e. x ∈Ω, we have:

ai(x,u+tv,∇(u+tv)) −→ ai(x,u+t0v,∇(u+t0v)), t→ t0,

then (6) combined to the lemma 2, implies
that ai(x,u + tv,∇(u + tv)) ⇀ ai(x,u + t0v,∇(u +

t0v)), weakly in (Lp
′
(x)(Ω,ν∗))N , when t → t0. Finally,

∀w ∈W 1,p(x)
0 (Ω,ν), ∀u,v,w ∈W 1,p(x)

0 (Ω,ν)

〈A(u + tv),w〉 −→ 〈A(u + t0v),w〉, when t→ t0.

On another side gn(x,u + tv,∇(u + tv)) → gn(x,u +
t0v,∇(u + t0v)), when t→ t0 a.e. x ∈Ω, moreover∫

Ω

|gn(x,u + tv,∇(u + tv))|p
′
(x)dx ≤ (

1
n

)p
′
+ |Ω| <∞,

while using, still the lemma 2, we obtain:

gn(x,u + tv,∇(u + tv))⇀gn(x,u + t0v,∇(u + t0v))

weakly in Lp
′
(x)(Ω), when t→ t0.

Seeing that w ∈ Lp
′
(x)(Ω), we will have:

〈Gn(u + tv),w〉 −→ 〈Gn(u + t0v),w〉, when t→ t0.

Now, we will show that A + Gn satisfies the prop-
erty of type (M), a.e. that, for all sequence (uj )j ⊂
W

1,p(x)
0 (Ω,ν) checking:

(i) uj ⇀u in W 1,p(x)
0 (Ω,ν)

(ii) (A+Gn)uj ⇀χ weakly in W −1,p
′
(x)(Ω,ν∗)

(iii) limsupj→∞〈(A+Gn)uj ,uj −u〉 ≤ 0,

then χ = (A+Gn)u.
Indeed:∫

Ω

gn(x,uj ,∇uj )(uj −u)dx ≤ ‖gn(x,uj ,∇uj )‖p′ (x)‖uj −u‖p(x)

≤ C
(∫

Ω

|gn(x,uj ,∇uj )|p
′
(x)dx

) 1
υ

‖uj −u‖p(x),ν

≤ C( 1
n )p

′
+ |Ω|‖uj −u‖p(x),ν −→ 0 when j→∞.

Thus

lim
j→∞
〈Gnuj ,uj −u〉 = 0.

consequently, according to (iii), we obtain

limsup
j→∞

〈Auj ,uj −u〉 ≤ 0,

and seeing that A is pseudo-monotonous [11], we de-
duce that

Auj ⇀Au weakly in W −1,p
′
(x)(Ω,ν∗)

and limj→∞〈Auj ,uj −u〉 = 0.
On another side

0 = lim
j→∞

∫
Ω

a(x,uj ,∇uj )∇(uj −u)dx

= lim
j→∞

(
∫
Ω

(
a(x,uj ,∇uj )− a(x,uj ,∇u)

)
∇(uj −u)dx

+
∫
Ω

a(x,uj ,∇u)∇(uj −u)dx).

Moreover we have a(x,uj ,∇u) −→ a(x,u,∇u) strongly

in (Lp
′
(x)(Ω,ν∗))N , then

lim
j→∞

∫
Ω

a(x,uj ,∇u)∇(uj −u)dx = 0.

Thus

lim
j→∞

∫
Ω

(
a(x,uj ,∇uj )− a(x,uj ,∇u)

)
∇(uj −u)dx = 0.
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Using the lemma 3, see blow, we conclude that

∇uj −→∇u a.e. in Ω, when j→∞.

Consequently

gn(x,uj ,∇uj ) −→ gn(x,u,∇u) a.e. in Ω, when j→∞.

Seeing that |gn(x,uj ,∇uj )| ≤ n ∈ Lp
′
(x)(Ω), then ac-

cording to the dominated convergence theorem of
Lebesgue, we obtain:

gn(x,uj ,∇uj ) −→ gn(x,u,∇u) in Lp
′
(x)(Ω).

and seeing that v ∈ Lp(x)(Ω), then we have:∫
Ω

gn(x,uj ,∇uj )vdx −→
∫
Ω

gn(x,u,∇u)vdx when j→

∞, that means

Gnuj ⇀Gnu in W −1,p
′
(x)(Ω,ν∗) when j→∞.

Finally

Auj+Gnuj ⇀Au+Gnu = χ in W −1,p
′
(x)(Ω,ν∗) when j→

∞.

5 Technical lemmas

Lemma 2 Let γ a function weight in Ω, r(.) ∈ C+(Ω),
g ∈ Lr(x)(Ω,γ) and (gn)n ⊂ Lr(x)(Ω,γ) such that
‖gn‖r(x),γ ≤ C.
If gn→ g a.e. in Ω then gn⇀g weakly in Lr(x)(Ω,γ).

Proof:
Let n0 ≥ 1, let us pose

E(n0) =
{
x ∈Ω : |gn(x)− g(x)| ≤ 1,∀n ≥ n0

}
.

We have

mes(E(n0))→mes(Ω), when n0→∞.

Let

F =
{
ϕn0
∈ Lr

′
(x)(Ω,γ∗) : ϕn0

= 0 a.e. in Ω \E(n0)
}
.

Let us show that F is dense in Lr
′
(x)(Ω,γ∗) :

let f ∈ Lr
′
(x)(Ω,γ∗), let us pose:

fn0
(x) =

{
f (x) if x ∈ E(n0),

0 if x ∈Ω \E(n0).

We have

ρr ′ (x),γ∗(fn0
(x)− f (x)) =

∫
Ω

|fn0
(x)− f (x)|r

′
(x)γ∗dx

=
∫
E(n0)
|fn0

(x)− f (x)|r
′
(x)γ∗dx

+
∫
Ω\E(n0)

|fn0
(x)− f (x)|r

′
(x)γ∗dx,

=
∫
Ω\E(n0)

|fn0
(x)− f (x)|r

′
(x)γ∗dx,

=
∫
Ω

|f (x)|r
′
(x)γ∗χΩ\E(n0)(x)dx.

Let us pose ψn0
= |f (x)|r

′
(x)γ∗χΩ\E(n0)(x). we have

ψn0
→ 0 a.e.in Ω,
and

|ψn0
| ≤ |f (x)|r

′
(x)γ∗,

according to the dominate convergence theorem, we
will have

ρr ′ (x),γ∗(fn0
(x)− f (x))→ 0, when n0→∞,

what implies that F is dense in Lr
′
(x)(Ω,γ∗).

let us show, now, that

lim
n→∞

∫
Ω

ϕ(x)(gn(x)− g(x))dx = 0, ∀ϕ ∈ F.

Seeing that ϕ = 0 on Ω\En0
, it is thus enough to prove

that

lim
n→∞

∫
En0

ϕ(x)(gn(x)− g(x))dx = 0.

Let us pose φn = ϕ(gn − g), we have
|ϕ(x)||(gn(x)− g(x))| ≤ |ϕ(x)| in En0

,
and

φn −→ 0, a.e. in Ω

According to the dominate convergence theorem, we
have

φn −→ 0 a.e. in L1(Ω),

what implies that

lim
n→∞

∫
Ω

ϕ(x)(gn(x)− g(x))dx = 0, ∀ϕ ∈ F,

and by density of F in Lr
′
(x)(Ω,γ∗), we conclude that:

lim
n→∞

∫
Ω

ϕ(x)gn(x)dx =
∫
Ω

ϕ(x)g(x)dx, ∀ϕ ∈ Lr
′
(x)(Ω,γ∗),

that means

gn⇀g weakly in Lr(x)(Ω,γ).

Lemma 3 Assume that (3.1), (3.3), (3.5) hold, let (un)n
a sequence in W 1,p(x)

0 (Ω,ν) and u ∈W 1,p(x)
0 (Ω,ν).

If


un⇀u weakly inW 1,p(x)

0 (Ω,ν),

and

∫
Ω

(
a(x,un,∇un)− a(x,un,∇u)

)
(∇un −∇u)dx→ 0

then un −→ u strongly in W 1,p(x)
0 (Ω,ν).
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Proof:
Let us pose

Dn =
(
a(x,un,∇un)− a(x,un,∇u)

)
(∇un −∇u),

according the (3.5), we have Dn is a positive function.
We have also Dn→ 0 in L1(Ω).
Seeing that

un⇀u weakly inW 1,p(x)
0 (Ω,ν),

we have then

un −→ u strongly in Lq(x)(Ω,σ ),

and consequently

un −→ u a.e. in Ω.

Thanks to Dn→ 0 a.e. in Ω,
there is then B ⊂ Ω such that mes(B) = 0 and for
x ∈Ω \B, we have

|u(x)| <∞, |∇u(x)| <∞, un(x) −→ u(x) and Dn(x)→ 0.

Let us pose

ξn = ∇un(x), ξ = ∇u(x),

we have

Dn(x) ≥ α
N∑
i=1

ωi |ξ in|p(x) +α
N∑
i=1

ωi |ξ i |p(x)

−
N∑
i=1

ω
1
p(x)
i [k(x) + σ

1
p
′ (x) |un|

q(x)

p
′ (x)

+
N∑
j=1

ω
1

p
′ (x)
j |ξjn|p(x)−1]|ξ i |

−
N∑
i=1

ω
1
p(x)
i [k(x) + σ

1
p
′ (x) |un|

q(x)

p
′ (x)

+
N∑
j=1

ω
1

p
′ (x)
j |ξj |p(x)−1]|ξ in|,

≥ α
N∑
i=1

ωi |ξ in|p(x) −C(x)[1 +
N∑
j=1

ω
1

p
′ (x)
j |ξjn|p(x)−1

+
N∑
i=1

ω
1

p
′ (x)
i |ξ in|]

(13)
where C(x) is a function depending on x and not on n.
seeing that un(x) −→ u(x), we have |un(x)| ≤Mx, where
Mx is positive. Then by a standard argument, we will
have |ξn| is uniformly bounded compared to n; indeed:
(4.4) becomes

Dn(x) ≥
N∑
i=1

ωi |ξ in|p(x)(αωi −
C(x)

N |ξ i |p(x)
−
C(x)ω

1
p
′ (x)
i

|ξ in|
−

C(x)ω
1
p(x)
i

|ξ in|p(x)−1
).

If |ξn| →∞, there is at least i0 such that|ξ i0n | →∞,what
will give us Dn(x)→∞; what is absurd.
Let ξ∗ an adherent point of ξn, we have |ξ∗| < ∞ and
by continuity of the operator a compared to two last
variables, we will have:(

a(x,u,ξ∗)− a(x,u,ξ)
)
(ξ∗ − ξ) = 0,

and according to (3.2), we obtain ξ∗ = ξ.
the unicity of the adherent point implies ∇un(x) →
∇u(x) a.e. in Ω.
Seeing that the sequence (a(x,un,∇un))n is bounded in
(Lp(x)(Ω,ν))N , and a(x,un,∇un) −→ a(x,u,∇u) a.e. in
Ω, then according the lemma 2 we obtain

a(x,un,∇un)⇀a(x,u,∇u) weakly in (Lp(x)(Ω,ν))N .

let us pose ỹn = a(x,un,∇un)∇un and ỹ = a(x,u,∇u)∇u,
in the same way that in [4], we can write
ỹn = a(x,un,∇un)∇un −→ ỹ = a(x,u,∇u)∇u strongly in L1(Ω).
According to (3.3), we have

α
N∑
i=1

ν|∂un
∂xi
|p(x) ≤ ỹn.

let

zn =
N∑
i=1

ν|∂un
∂xi
|p(x), z =

N∑
i=1

ν| ∂u
∂xi
|p(x), yn =

ỹn
α
, y =

ỹ

α
.

Thanks to Fatou lemma, we obtain∫
Ω

2ydx ≤ liminf
n→∞

∫
Ω

y + yn − |zn − z|dx,

ie

0 ≤ − limsup
n→∞

∫
Ω

|zn − z|dx,

then

0 ≤ liminf
n→∞

∫
Ω

|zn − z|dx ≤ limsup
∫
Ω

|zn − z|dx ≤ 0,

what implies

∇un −→∇u in (Lp(x)(Ω,ν))N ,

consequently

un −→ u in W
1,p(x)
0 (Ω,ν).

Definition 3 for any k > 0 and s ∈ IR , the truncature
function Tk(.) is defined as:

Tk(s) =

 s if |s| ≤ k,
k
s
|s|

if |s| > k.

Lemma 4 Let (un)n a sequence from W
1,p(x)
0 (Ω,ν) such

that un ⇀ u weakly in W
1,p(x)
0 (Ω,ν). Then Tk(un) ⇀

Tk(u) weakly in W 1,p(x)
0 (Ω,ν).
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Proof
We have un ⇀ u weakly in W

1,p(x)
0 (Ω,ν), and

W
1,p(x)
0 (Ω,ν) ↪→↪→ Lp(x)(Ω), we will have un → u

strongly in Lp(x)(Ω) and a.e. in Ω, consequently
T
k
(un)→ T

k
(un) a.e. in Ω.

On another side

‖T
k
(un)‖θ1

p(x),ν ≤
∫
Ω

|∇Tk(un)|p(x)ν(x)dx,

≤
∫
Ω

|∇T
′
k (un)||∇un|p(x)ν(x)dx,

≤
∫
Ω

|∇un|p(x)ν(x)dx,

≤ ‖un‖
θ2
p(x),ν ,

where

θ1 =
{
p+ if ‖T

k
(un)‖p(x),ν ≤ 1,

p− if ‖T
k
(un)‖p(x),ν > 1,

and

θ1 =
{
p+ si ‖un‖p(x),ν ≥ 1,
p− si ‖un‖p(x),ν < 1.

Thus (T
k
(un))n is bounded in W

1,p(x)
0 (Ω,ν), conse-

quently Tk(un)⇀Tk(u) weakly in W 1,p(x)
0 (Ω,ν).

6 Proof of theorem 1

Step1: a priori estimate
The problem (Pn) admits at least a solution

un belonging to W 1,p(x)
0 (Ω,ν). Choosing Tk(un)

as test function in (Pn), and seeing that∫
Ω

gn(x,un,∇un)Tk(un)dx ≥ 0, we obtain:∫
Ω

a(x,un,∇Tk(un))∇Tk(un)dx ≤
∫
Ω

fnTk(un)dx.

Using (5), we deduce that

α

∫
Ω

ν(x)|∇Tk(un)|p(x)dx ≤ kC1,

that means ∫
Ω

ν(x)|∇Tk(un)|p(x)dx ≤ k
α
C1.

Consequently

‖∇Tk(un)‖γp(x),ν ≤ C2,

where

γ =
{

p+ if ‖∇Tk(un)‖p(x),ν ≥ 1,
p− if ‖∇Tk(un)‖p(x),ν < 1.

Onthe other hand, we have∫
Ω

a(x,un,∇Tk(un))∇Tk(un)dx

+
∫
Ω

gn(x,un,∇un)Tk(un)dx =
∫
Ω

fnTk(un)dx.

What implies∫
Ω

gn(x,un,∇un)Tk(un)dx ≤
∫
Ω

|fn|kdx.

Thus ∫
{|un |>k}

k
un
|un|

gn(x,un,∇un)dx

+
∫
{|un |≤k}

gn(x,un,∇un)undx ≤
∫
Ω

|fn|kdx.

Consequently

k

∫
{|un |>k}

gn(x,un,∇un)dx ≤ kC1

However∫
Ω

ν(x)|∇un|p(x)dx =
∫
{|un |>k}

ν(x)|∇un|p(x)dx

+
∫
Ω

ν(x)|∇un|p(x)dx.

Then for k > ρ1, we will have:∫
Ω

ν(x)|∇un|p(x)dx ≤ 1
ρ2

∫
{|un |>k}

gn(x,un,∇un)dx+C2 ≤ C4

What implies that a sequence (un)n is bounded in

W
1,p(x)
0 (Ω,ν).

Step2: Strong convergence of truncations
Seeing that (un)n is bounded in W 1,p(x)

0 (Ω,ν), and

W
1,p(x)
0 (Ω,ν) ↪→↪→ Lp(x)(Ω), we can extract a subse-

quence of (un)n, still noted (un)n, and there is u ∈
W

1,p(x)
0 (Ω,ν) such that{

un⇀u in W
1,p(x)
0 (Ω,ν),

un→ u a.e. in Ω,

We want to show that Tk(un) → Tk(u) strongly in

W
1,p(x)
0 (Ω,ν).

Let zn = Tk(un) − Tk(u), let us pose vn = ϕλ(zn),
where ϕλ(s) = seλs

2
.

Choosing vn as test function in (Pn).

We are (vn)n is bounded in W 1,p(x)
0 (Ω,ν), and vn → 0

a.e. in Ω, then according to lemma 4, we obtain

vn⇀ 0 weakly in W 1,p(x)
0 (Ω,ν),.

thus 〈fn,vn〉 → 0, because vn ⇀ 0 weakly in L∞(Ω),
and fn→ f strongly in L1(Ω).
Consequently

η1n = 〈Aun,vn〉+ 〈Gnun,vn〉 −→ 0.

Seeing that gn(x,un,∇un) ≥ 0 on {x ∈Ω : |un| ≥ k}, then
we have:

〈Aun,vn〉+
∫
{x∈Ω:|un |≤k}

gn(x,un,∇un)vndx ≤ η1n.

Thus

〈Aun,vn〉− |
∫
{x∈Ω:|un |≤k}

gn(x,un,∇un)vndx| ≤ η1n. (14)
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however

〈Aun,vn〉 =
∫
Ω

a(x,un,∇un)∇(Tk(un)− Tk(u))ϕ
′
λ(zn)dx

=
∫
Ω

a(x,Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))ϕ
′
λ(zn)dx

−
∫
|un |>k

a(x,un,∇un)∇Tk(u)ϕ
′
λ(zn)dx

(15)

=
∫
Ω

[
a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u))

]
∇(Tk(un)−

Tk(u))ϕ
′
λ(zn)dx+ η2n,

where

η2n =
∫
Ω

a(x,Tk(un),∇Tk(u))∇(Tk(un)−Tk(u))ϕ
′
λ(zn)dx−∫

|un |>k
a(x,un,∇un)∇Tk(u)ϕ

′
λ(zn)dx.

We have{
∇Tk(u)χ{|un>k|}→ 0 strongly in (Lp(x)(Ω,ν))N ,

(a(x,un,∇un))n is bounded in (Lp
′
(x)(Ω,ν∗))N ,

⇒ η2n −→ 0 whenn→∞.
On another side

|
∫
{|un |≤k}

gn(x,un,∇un)vndx|

≤
∫
{|un |≤k}

|gn(x,un,∇un)||vn|dx

≤
∫
{|un |≤k}

d(k)(c(x) + ν(x)|∇un|p(x)|vn|dx

≤ d(k)
∫
{|un |≤k}

c(x)|ϕλ(zn)|dx

+d(k)
α

∫
{|un |≤k}

a(x,un,∇un)∇un|ϕλ(zn)|dx

(16)

≤ η3n + d(k)
α

∫
Ω

a(x,Tk(un),∇Tk(un))∇Tk(un)|ϕλ(zn)|dx

≤ d(k)
α

∫
Ω

(
a(x,Tk(un),∇Tk(un))− a(x,Tk(un),∇Tk(un))

)
×
[
∇Tk(un)−∇Tk(u)

]
|ϕλ(zn)|dx+ η4n,

where

η3n = d(k)
∫
{|un |≤k}

c(x)|ϕλ(zn)|dx→ 0 whenn→∞,

and η4n = d(k)
α

∫
Ω

a(x,Tk(un),∇Tk(un))∇Tk(u)|ϕλ(zn)|dx

+d(k)
α

∫
Ω

a(x,Tk(un),∇Tk(u))(∇Tk(un)−∇Tk(u))|ϕλ(zn)|dx

+ η3n → 0 whenn→∞,
If λ ≥ (d(k)

α )2 then, by a simple calculation, we have

ϕ
′
λ(s)− d(k)

α
|ϕλ(s)| ≥ 1

2
.

By combining this last inequality with (14), (15) and
(16), we obtain∫
Ω

(
a(x,Tk(un),∇Tk(un))− a(x,Tk(un),∇Tk(un))

)

×
[
∇Tk(un)−∇Tk(u)

]
≤ 2(η1n − η2n + η4n),−→ 0; whenn→∞.
Thanks to lemma 3, we deduce that

Tk(un) −→ Tk(u) strongly in W 1,p(x)
0 (Ω,ν). (17)

step3: Equi-integrability of the nonlinearitie
(gn(x,un,∇un))n
We will show that gn(x,un,∇un)→ g(x,u,∇u) strongly
in L1(Ω). Seeing (17), we deduce that

∇un→∇u a.e. in Ω, when n→∞. (18)

Let E a measurable part of Ω, and let m > 0, let us
pose

Xnm = {x ∈Ω : |un| ≤m} et (Xnm)c = {x ∈Ω : |un| > m}.

We have∫
E
|gn(x,un,∇un)|dx =

∫
E∩Xnm

|gn(x,un,∇un)|dx

+
∫
E∩(Xnm)c

|gn(x,un,∇un)|dx,

≤ d(m)
∫
E

(ν(x)|∇Tm(un)|p(x)

+c(x))dx+
∫

(Xnm)c
|gn(x,un,∇un)|dx.

(19)
Thanks to (17) and seeing c(x) ∈ L1(Ω), there is δ > 0
such that for all E: |E| < δ, then

d(m)
∫
E

(ν(x)|∇Tm(un)|p(x) + c(x))dx ≤
η

2
. (20)

Let ψm a function defined by:

ψm(x) =


0 if |s| ≤m− 1,
1 if s ≥m,
1 if s ≤ −m,

ψ
′
m(x) = 1 ifm− 1 ≤ |s| ≤m,

we have ψm(un) ∈ W 1,p(x)
0 (Ω,ν), choosing ψm(un) as

test function in (Pn), we obtain:∫
Ω

a(x,un,∇un)∇unψ
′
m(un)dx+

∫
Ω

gn(x,un,∇un)ψm(un)dx

=
∫
Ω

fnψm(un)dx.

According (9) and (10), we deduce that∫
{|un |>m−1}

|gn(x,un,∇un)|dx ≤
∫
{|un |>m−1}

|fn|dx.

what implies∫
{|un |>m}

|gn(x,un,∇un)|dx ≤
∫
{|un |>m−1}

|fn|dx.

however fn→ f in L1(Ω) and |{|un| > m−1}| → 0 when
m → ∞, uniformly in n, then for m big enough we
have; ∫

{|un |>m−1}
|fn|dx ≤

η

2
, ∀n ∈ IN .
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Thus ∫
{|un |>m}

|gn(x,un,∇un)|dx ≤
η

2
, ∀n ∈ IN . (21)

Combining (19), (20) and (21), we deduce that∫
E
|gn(x,un,∇un)|dx ≤ η, for alln ∈ IN .

That means that the sequence (gn(x,un,∇un))n is equi-
integrable, but gn(x,un,∇un) → g(x,u,∇u) a.e. in Ω,
then thanks to Vitali theorem, we deduce that

gn(x,un,∇un)→ g(x,u,∇u) strongly in L1(Ω).

step4: passing to the limit
Seeing that (un)n is bounded in W

1,p(x)
0 (Ω,ν), and

thanks to (6), we conclude that (a(x,un,∇un))n
is bounded in (Lp

′
(x)(Ω,ν∗))N , and seeing that

a(x,un,∇un)→ a(x,u,∇u) a.e. in Ω, then according to
the lemma 2, we obtain that

a(x,un,∇un)⇀a(x,u,∇u) weakly in (Lp
′
(x)(Ω,ν∗))N ,

while making n→∞, we obtain ∀v ∈ W 1,p(x)
0 (Ω,ν)∩

L∞(Ω),

〈Au,v〉+
∫
Ω

g(x,u,∇u)vdx =
∫
Ω

f vdx.

7 Example of application

Let Ω be a bounded open subset of IRN , N ≥ 2, and
let p(x),q(x) ∈ C+(Ω).
Let us pose:

ai(x,r,ζ) = ν(x)|ζi |p(x)−1sgn(ζi), i = 1, ...,N ,
and
g(x,r,ζ) = ρr |r |q(x)ν(x)|ζ|p(x),ρ > 0,

were ν(x) a function weight in Ω. The function ai ,
i = 1, ...,N , which satisfies the assumptions of theo-
rem (6), (7) and (8); and well as the function g satis-
fies (9), (10) and (11), with |s| ≥ ρ1 = 1 and ρ2 = ρ > 0,
consequently the assumptions of theorem 1 are satis-
fied; thus for f ∈ L1(Ω), the following theorem, with
ν(x) = dλ(x):

(E)



N∑
i=1

∂
∂xi

(
dλ(x)| ∂u

∂xi
|p(x)−1sgn(

∂u
∂xi

)
)

+ρu|u|q(x) ∑N
i=1

∂
∂xi
dλ(x)| ∂u∂xi |

p(x) = f inD′(Ω),

u ∈W 1,p(x)
0 (Ω,dλ(x)) and

ρu|u|q(x) ∑N
i=1

∂
∂xi
dλ(x)| ∂u∂xi |

p(x) ∈ L1(Ω),

admits at least one solution u ∈W 1,p(x)
0 (Ω,dλ(x)).
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